Subir Ray

High Voltage Engineering

An Introduction to

Second Edition

Subir Ray
To
My Mother
For giving me the courage to fight against odds

My wife, Sumita
For showing me the virtue of sobriety

My daughter Suchandra and son Sudipto
For teaching me the essence of patience
Contents

Preface xi

Preface to the First Edition xiii

1. Breakdown Mechanisms in Gases under Static Uniform Field 1–17

1.1 Breakdown of Insulators—What is it? 1
1.2 Electric Field and Stress 1
1.3 Bohr’s Atomic Model Revisited 2
1.4 Ionization 3
1.5 Ionization Processes 4
 1.5.1 Ionization by Collision 4
 1.5.2 Photo-ionization 5
 1.5.3 Ionization on the Surface of Electrodes 5
1.6 Townsend’s Mechanism 5
1.7 Time Lag for Breakdown 9
1.8 Streamer Theory of Breakdown of Gases 10
1.9 Comparison of Townsend’s and Streamer Mechanisms 11
1.10 Post-breakdown Current–Voltage Characteristic 12
1.11 Recovery of Electric Field Strength 13
1.12 Problems 13

Review Questions 17

2. Breakdown Characteristics of Gases under Uniform Field 18–35

2.1 More About α And γ 18
2.2 Paschen’s Law 19
2.3 Minimum Breakdown Voltage 20
2.4 Effect of Temperature 22
2.5 De-ionization 23
2.6 Desirable Properties of a Gaseous Insulator 24
2.7 Sulphur Hexafluoride (SF_6) as an Insulator 24
2.8 Vacuum as a Dielectric 25
2.9 Factors Affecting Time Lag for Breakdown 26
2.10 Breakdown in a Uniform AC Field 26
2.11 Breakdown under Impulse Voltage 27
 2.11.1 Impulse Volt–Time Characteristics 28
2.12 Practical Breakdown Characteristics 29
2.13 Problems 33

Review Questions 35

3. Breakdown of Gases in a Non-uniform Field 36–47

3.1 Breakdown in Uniform and Non-uniform Fields 36
3.2 Degree of Non-uniformity 36
3.3 Breakdown in a Non-uniform Field 37
3.4 Effect of Space Charge on the Breakdown Voltage 39
3.5 Effect of Pressure on Corona Inception and Breakdown Voltage 40
3.6 Corona Inception Stress in Air 41
3.7 Corona Current 42
3.8 Corona Loss in Air 42
 3.8.1 Corona Loss on Conductors at dc Voltage 42
 3.8.2 Corona Loss on Conductors at ac Voltage 44
3.9 Problems 46

Review Questions 47

4. Lightning Phenomenon 48–57

4.1 What is Lightning? 48
4.2 Charge Formation in Cloud 48
 4.2.1 Wilson’s Theory 49
 4.2.2 Simpson’s Theory 50
4.3 Different Forms Taken by Lightning 51
 4.3.1 Cloud Flashes 52
 4.3.2 Air Discharges 52
 4.3.3 Forked Lightning or Lightning Stroke to Ground 52
4.4 Mechanism of Forked Lightning 52
4.5 Multiple Strokes 54
4.6 Return Stroke Current 55
4.7 Energy in Lightning 57

Review Questions 57

5. Breakdown in Liquids and Solids 58–74

5.1 Introduction 58
5.2 Breakdown in Liquids 58
 5.2.1 Classification of Liquids 58
 5.2.2 Liquid Breakdown Test Cells 59
 5.2.3 Breakdown in Pure Liquids 59
 5.2.4 Breakdown in Commercial Liquids 61
5.3 Breakdown in Solids 63
 5.3.1 Intrinsic Breakdown 64
 5.3.2 Electromechanical Breakdown 65
 5.3.3 Thermal Breakdown 66
 5.3.4 Mechanisms of Breakdown Occurring After Prolonged Operation 68
5.4 Breakdown of Composite Dielectrics 71
5.5 Problems 72
Review Questions 74

6. Generation of High Voltages 75–117

6.1 Introduction 75
6.2 Impulse Voltages 76
 6.2.1 Characteristics of Impulse Voltage 76
 6.2.2 Single-stage Impulse Generator Circuits 79
 6.2.3 Multi-stage Impulse Generators 86
 6.2.4 Constructional Features of Impulse Generators 89
 6.2.5 Generation of Switching Impulse Voltages 91
6.3 Generation of High Alternating Voltages 92
 6.3.1 Testing Transformers 92
 6.3.2 Cascaded Transformers 94
 6.3.3 Series Resonant Circuits 97
6.4 Generation of High Direct Voltages 98
 6.4.1 Characteristic Parameters 99
 6.4.2 Fundamentals of Rectifier Circuits 99
 6.4.3 Voltage Doubler Circuit 102
 6.4.4 Cascade Circuit 103
 6.4.5 Van de Graaff Generator 107
6.5 Problems 109
Review Questions 116

7. Measurement of High Voltages 118–154

7.1 Introduction 118
7.2 Measurement of High Alternating Voltages 118
 7.2.1 Peak Voltage Measurement with Sphere-gaps 118
 7.2.2 Peak Voltage Measurement Using Measuring Capacitors 122
 7.2.3 Peak Value Measurement with Capacitor Voltage Divider 125
 7.2.4 Measurement of rms Values by Electrostatic Voltmeters 128
 7.2.5 Capacitance Voltage Transformer (CVT) 130
 7.2.6 Digital Recording 132
7.3 Measurement of High Direct Voltages 133
 7.3.1 Electrostatic Voltmeters 133
 7.3.2 Generating Voltmeter 133
 7.3.3 Sphere-gap 136
 7.3.4 Measurement of Ripple Voltages 136
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Measurement of Impulse Voltages</td>
<td>137</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Peak Value Measurement Using a Sphere-gap</td>
<td>137</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Voltage Dividers</td>
<td>140</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Resistive Voltage Divider</td>
<td>143</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Capacitance Voltage Dividers</td>
<td>145</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Delay Cables</td>
<td>148</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Measurement of Peak Voltage by an Indicating Electronic Device</td>
<td>150</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Digital Recorders for Impulse Measurements</td>
<td>151</td>
</tr>
<tr>
<td>Review Questions</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>8.</td>
<td>Overvoltage Transients in Power Systems</td>
<td>155–201</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic Concepts of Transients</td>
<td>155</td>
</tr>
<tr>
<td>8.2</td>
<td>Classification of Power System Transients</td>
<td>156</td>
</tr>
<tr>
<td>8.3</td>
<td>Lightning Overvoltage</td>
<td>156</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Interaction Between Lightning and the Power System</td>
<td>157</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Propagation of Lightning Current and Voltage Along Transmission Lines</td>
<td>159</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Shape of Lightning Voltage Waves</td>
<td>162</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Reflection and Refraction of Rectangular Travelling Waves</td>
<td>163</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Successive Reflections</td>
<td>168</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Ground Wires</td>
<td>169</td>
</tr>
<tr>
<td>8.4</td>
<td>Switching Overvoltages</td>
<td>171</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Transient Initiated by the Clearing of a Fault</td>
<td>172</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Switching Overvoltages due to Disconnection of an Unloaded Transformer</td>
<td>174</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Overvoltage due to Capacitance Switching</td>
<td>177</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Overvoltage due to Ferro-resonance</td>
<td>179</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Power Frequency Overvoltages</td>
<td>182</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Control of Overvoltages due to Switching</td>
<td>182</td>
</tr>
<tr>
<td>8.5</td>
<td>Transformer Winding Behaviour under Transient Conditions</td>
<td>182</td>
</tr>
<tr>
<td>8.6</td>
<td>Protection of System Insulation Against Transient Overvoltages</td>
<td>187</td>
</tr>
<tr>
<td>8.7</td>
<td>Insulation Coordination</td>
<td>195</td>
</tr>
<tr>
<td>8.8</td>
<td>Problems</td>
<td>196</td>
</tr>
<tr>
<td>Review Questions</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>202</td>
</tr>
<tr>
<td>9.2</td>
<td>Terms Used in Standards</td>
<td>202</td>
</tr>
<tr>
<td>9.3</td>
<td>High Voltage Tests on Line Insulators</td>
<td>204</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Arrangement of Insulators for Test</td>
<td>204</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Power Frequency Tests</td>
<td>205</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Impulse Tests</td>
<td>205</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Impulse Withstand Voltage Tests</td>
<td>205</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Pollution Testing</td>
<td>206</td>
</tr>
</tbody>
</table>
9.4 High Voltage Tests on Bushings 206
 9.4.1 Impulse Voltage Tests 206
9.5 High Voltage Tests on Transformers 206
 9.5.1 Induced and Applied Overvoltage Tests 206
 9.5.2 Impulse Testing of Transformers 207
 9.5.3 Lightning Impulse Testing 207
 9.5.4 Switching Impulse Tests 209
9.6 High Voltage Tests on Cables 211
9.7 Non-destructive High Voltage Tests 211
 9.7.1 Measurement of Capacitance and Dissipation Factor 211
 9.7.2 Partial-discharge Measurements (PD Measurements) 216
9.8 Tests on Lightning Arresters 219
 9.8.1 Impulse Current Test 220
9.9 Problems 222

Review Questions 224

10. Electrostatic Field Estimation 225–242

 10.1 Fundamentals of Electric Field 225
 10.1.1 Boundary Conditions 227
 10.1.2 Estimation of Electric Field by Direct Solution
 of Laplace Equation 229
 10.2 Numerical Methods for Field Computations 234
 10.2.1 Finite Element Method (FEM) 235
 10.2.2 Charge Simulation Method (CSM) 237
 10.2.3 Surface Charge Simulation Method 240
 10.3 Comparison of Numerical Techniques 242
 10.4 Electric Stress Control 242

Appendix Partial Discharges (PD) 243–244

References 245–248

Index 249–251
Preface

The first edition of this book was intended to provide a basic concept of high voltage engineering to the undergraduate students of Electrical Engineering. The topics dealt with four major components—breakdown mechanism, generation and measurement of high voltage, high voltage testing and high voltage phenomenon in transmission systems. Over the last decade, electric field analyses using digital methods are extensively practiced for insulation design. A new chapter on electric field estimation is being added in the second edition. Instead of going into the details of field theory, the chapter has been devoted to its application to high voltage systems. Techniques for measurement of partial discharges have undergone a lot of changes. The fundamentals of partial discharges were adequately addressed to in the first edition. An appendix is being added to provide the readers with modern concepts of partial discharge and its detection.

I am thankful to my daughter-in-law, Jayeetri for helping with the manuscript typing. Thanks are due to ex-Professor N. Chatterjee, Jadavpur University and Professor S. Sen of IIT Kharagpur for their constructive suggestions. I must express my gratitude to the management of M.V.J. College of Engineering, Bangalore, especially Dr. K.S. Badrinarayan, Principal, for allowing me to bring out the second edition. I am also thankful to my publishers PHI Learning for bringing out the second edition.

SUBIR RAY
Since the first public power station established in London more than 120 years ago, the electric utility system has witnessed revolutionary changes. To meet the ever-increasing demand of electric energy at locations spread over vast territories, the power system has grown into an integrated one interconnecting generating stations by gigantic transmission networks. Tapping of hydel energy at places far remote from load centres in certain countries has necessitated long transmission lines intended to carry bulk power. Accordingly, the transmission voltage levels have increased rapidly. High voltage dc links (sometimes hundreds of kilometres in length) are now being successfully used for providing a channel for power flow.

Voltage levels of 1000 kV and above have been achieved over the last few decades in some countries. Such high transmission voltages necessitate a proper design of the insulation system. Not only should the insulation system be capable of withstanding such high normal system voltages, it should also be capable of withstanding transient overvoltages associated with external lightning discharges or internal switching operations without any outage. To achieve this, the system engineers need to have an understanding of the properties of insulating materials to be used as well as knowledge of the characteristics of the overvoltages appearing in the system.

Insulations may be solid, liquid, or gaseous. In electrical systems a combination of these insulating media is used. The properties of gases, as well as those of liquid and solid insulating materials, are of fundamental significance to high voltage engineering—a field of electrical engineering which is concerned with the physical phenomena and technical problems associated with high voltages. While we have now a reasonably satisfactory idea of breakdown characteristics of several gaseous media supported by theoretical treatment, the same cannot be said of the other two media. So, experiment constitutes the backbone of research in this area. Our idea of overvoltages appearing in power systems and their effects on the system is also not supported by accurate theoretical treatment. This is because of the statistical nature of overvoltages and the complications involved in quantization. One has to depend on national or international standards which are essentially based on experiments and statistical inferences, for equipment insulation design. Accordingly, it is necessary to test high voltage equipment during its development stage and prior to commissioning, to verify if the insulation can withstand the overvoltage as recommended in the standards.

Preface to the First Edition
From what has been said in the preceding paragraph it is clear that research and
development in the field of high voltage technology cannot be carried out without expensive
high voltage laboratories. For the purpose of effective teaching in this area, students need to
be exposed to such laboratory practices. Such laboratory facilities are not available at all the
technical institutes, and only the institutes having such facilities offer specialized courses on
high voltage technology.

A qualitative change is taking place as regards manpower requirement in power systems
since 1990. Flexible ac transmission systems (FACTS) technology employing power
electronic devices is gaining popularity and the process of unbundling of generation and
transmission areas (to be managed by separate companies) has started all over the world. So,
more and more technical personnel drawn from specialized areas other than high voltage
engineering are being exposed to high voltage systems. It is, therefore, being felt that an
introductory course on high voltage engineering should be included in the curriculum at the
undergraduate level in electrical engineering and may also form a part of the package of
power system courses.

The present book is intended to address the situation by providing a basic concept of
high voltage engineering qualitatively, and wherever possible quantitatively. The book will be
useful not only to students studying the first course on high voltage engineering, but also to
practicing engineers who are not exposed to formal training on high voltage technology.

The book deals with the following broad topics: (i) breakdown mechanisms and
characteristics of insulating media, (ii) generation and measurement of high voltages,
(iii) high voltage phenomenon in electric power systems, and (iv) high voltage testing of
equipment.

Chapters 1 to 4 are devoted to the study of breakdown of gaseous insulation. While
Chapters 1 and 2 deal with the breakdown mechanisms and characteristics in uniform field,
Chapter 3 discusses the same topic under a non-uniform field. In Chapter 4, lightning
discharges have been dealt with as a special case of breakdown of a long non-uniform air-
gap. Breakdown mechanisms of liquid and solid dielectric materials have been covered in
Chapter 5. Chapters 6 and 7 describe the principles of generation of high voltages in the
laboratory for testing purposes and the measurement of such high voltages, respectively. In
Chapter 8, the transient overvoltage phenomenon in power systems is discussed and the
necessity of high voltage testing has been emphasized. Finally, Chapter 9 describes some
important high voltage tests performed on power system equipment.

It is expected that the reader will have the following pre-requisites to appreciate the
contents of the book: (i) elementary concepts of atomic models and electric field,
(ii) concepts of circuit theory including transient analysis, (iii) knowledge of electric power
transmission and electrical measurements.

I would whole-heartedly welcome constructive criticism and appraisal of this book from
students and faculty alike. I sincerely invite their comments and suggestions for improving
this book.

I am deeply indebted to Dr. P.L. Gautam, Vice-Chancellor of Govind Ballabh Pant
University of Agriculture and Technology and Dr. C.S. Jaiswal, former Dean, Faculty of
Technology, for their constant encouragement, constructive suggestions, and valuable
comments during the writing of this book.
Dear Readers, Welcome to High Voltage Engineering multiple choice questions and answers with explanation. These objective type High Voltage Engineering questions are very important for campus placement test, semester exams, job interviews and competitive exams like GATE, IES, PSU, NET/SET/JRF, UPSC and diploma. Specially developed for the Electrical Engineering freshers and professionals, these model questions are asked in the online technical test and interview of many companies. Introduction High voltage engineering has very wide range of application in many areas of modern industry. High voltage engineering occupies an important place in power engineering development all over the World. Problem of stable work supply of any electric energy system is solved by means of high voltage technology using: reliable external and internal insulation performance. High Voltage Engineering: Fundamentals. to several tens of microseconds and then slowly decreasing to zero. The standard impulse voltage has been accepted as an aperiodic impulse that reaches its peak value in 1.2 µsec and then decreases slowly (in about 50 µsec) to half its peak value.