A comparison of SIFT, PCA-SIFT and SURF

Luo Juan, Oubong Gwun

Pages - 143 - 152 | Revised - 30-09-2009 | Published - 21-10-2009
Published in International Journal of Image Processing (IJP)
Volume - 3 Issue - 4 | Publication Date - August 2009 Table of Contents

MORE INFORMATION
References | Cited By (442) | Abstracting & Indexing

KEYWORDS
SIFT, PCA-SIFT, SURF, robust detectors

ABSTRACT
This paper compares three robust feature detection methods, they are, Scale Invariant Feature Transform (SIFT), Principal Component Analysis (PCA)-SIFT and Speeded Up Robust Features (SURF). Lowe presented SIFT [1], which was successfully used in recognition, stitching and many other applications because of its robustness. Yan Ke [2] gave a change of SIFT by using PCA to normalize the gradient patch instead of histogram. H. Bay [3] presented a faster method for SURF, which used Fast-Hessian detector. The performance of the three methods is compared for scale changes, rotation, blur, illumination changes and affine transformations, all of which uses repeatability as an evaluation measurement. Additionally, RANSAC is used to reject the inconsistent matches [4]. SIFT presents its stability in most situation except rotation and illumination changes. SURF is the fastest one with good performance as the same as SIFT, PCA-SIFT shows its advantages in rotation, blur and illumination changes.

CITED BY (442)

1 Han, C. H. (2010). Reduced Dimensional SURF Based Hand Gesture Recognition.
6 Einrichtung, B., & Lehrerbildung, Z. OPUS-Passau.
10 COMIT, Y. A. P. E. S. Eduardo Quintana Contreras.
43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Technology (No. 73, p. 900). World Academy of Science, Engineering and Technology (WASET).

Landmark and an Improved SURF. In Proceedings of World Academy of Science, Engineering and Technology to Lithography Pattern of Light Emitting Diode Chip.

Creve, M. Navigatiehulp voor mensen met een visuele beperking.

Laura, T. L. (2013). Sistema de supervisão averroea área baseado em navegação visual para detecção de anomalias em instalações de petróleo e gás.

Couto, L., & Osório, F. Auto-Localização Autônoma de Robôs Móveis por Visão Computacional Baseada em Pontos de Referência.

62 Kishino, T., Zhe, S., & Micheletto, R. A fast and precise HOG-Adaboost based visual support system capable to recognize Pedestrian and estimate their distance.

74 Arzou, M. M., Kyriazis, M. P., Examinateurs, M. F. E., & Fernando, M. L. C. GRADE DE DOCTEUR.

75 Yuan, H., Feng, W., Qu, H., & Wang, H. Fault Diagnosis of Rolling Bearings Based on SURF algorithm.

82 Kishino, T., Zhe, S., & Micheletto, R. A fast and precise HOG-Adaboost based visual support system capable to recognize Pedestrian and estimate their distance.

83 Weiw, W., & Oubong, G. AN ENHANCEMENT AND STITCHING SYSTEM FOR X-RAY IMAGES.

99 CARATA, L., & MANTA, V. THE INFLUENCE OF CHROMATIC AND LUMINANCE NOISE ON SCALE-INVARIANT DESCRIPTORS.

104 Khan, Y. D., Abid, A., Farooq, M. S., Abid, K., & Farooq, U. A QUALITATIVE ANALYSIS OF FEATURE EXTRACTION BASED ACTION RECOGNITION TECHNIQUES.

118 Muralidharan, R. Two-Dimensional Object Recognition using SV global feature.

122 SenGupta, A. A Formal Study of Video Segmentation.

127 Gunura, K., & Eugster, D. High-Speed Motion Tracking for Robot Control.

Cooper, T. Make and Model Recognition using Android.

ACE, P. VYSOKO UTCEV· TECHNICKEV BRNTE.

Hong, D., & Yang, L. A Algorithm for Static Gesture recognition Using combination of object features.

Iтурбе, M., Kóhim, O., & Uribeetxeberria, R. SURF and MU-SURF descriptor comparison with application in soft-biometric tattoo matching applications.

222 Strat, S. T. (2013). Analysis and interpretation of visual scenes through collaborative approaches (Doctoral dissertation, Université de Grenoble; Universitatea politehnica (Bucarest)).

232 Munaro, M., & Ghidoni, S. Deniz Tartaro Dizmen.

234 Ibrahim, M., El-gendy, O., & Farouk, M. Distributed 3D Object Recognition System Using Smartphones.

238 Selvanayaki, K. S., & Rm, S. (2006). AN IMPROVED APPROACH FOR DETECTION AND CLASSIFICATION OF VEHICLES IN VIDEO USING SUPPORT VECTOR MACHINES.

258 Polishchuk, E. Recognition of panorama parts using OpenCV.

317 Zhang, J., Zhang, K., Niu, W., & Huang, J. (2013). SAR image automatic registration based on PCA-SIFT (HPCC_EUC), 2013 IEEE 10th International Conference on (pp. 93-100). IEEE.

318 Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing

332 Mathew, A., & Asari, V. K. (2012). Local Histogram Based Descriptor for Tracking in Wide Area Imagery. In Wireless Networks and Computational Intelligence (pp. 119-128). Springer Berlin Heidelberg.

The standard SIFT representation outperforms PCA-SIFT only when extremely high false positives rates can be tolerated. Figure 3: A comparison between SIFT and PCA-SIFT ($n=20$) on some challenging real-world images taken from different viewpoints. (A) is a photo of a cluttered coffee table; (B) is a wall covered in Grafti from the INRIA Grafti dataset. The top ten matches are shown for each algorithm: solid white lines denote correct matches while dotted black lines show incorrect ones. Download Citation on ResearchGate | A comparison of sift, pca-sift and surf | This paper summarizes the three robust feature detection methods: Scale Invariant Feature Transform (SIFT), Principal Component Analysis (PCA) SIFT and Speeded Up Robust Features (SURF). This paper uses KNN (K-NearestNeighbor) and Random Sample Consensus (RANSAC) to the three... A SIFT-Based DEM Extraction Approach Using GEOEYE-1 Satellite Stereo Pairs. Article.