SYMMEtRY IN PHYSICS

vOＬuME 1:
PRINCIPLES AND SIMPLE APPLICATIONS

J. P. ELLIOTT and P. G. DAWBER

School of Mathematical and Physical Sciences
University of Sussex, Brighton

OXFORD UNIVERSITY PRESS
New York
Contents of Volume 1

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>The place of symmetry in physics</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Examples of the consequences of symmetry</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>One particle in one dimension (classical)</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>One particle in two dimensions (classical)</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Two particles connected by springs (classical)</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4</td>
<td>One particle in three dimensions using quantum mechanics—spherical symmetry and degeneracies</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5</td>
<td>One particle in one dimension using quantum mechanics—parity and selection rules</td>
<td>6</td>
</tr>
<tr>
<td>1.2.6</td>
<td>The search for symmetry—elementary particle physics</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Groups and Group Properties</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Definition of a group</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Examples of groups</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Isomorphism</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Subgroups</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>The direct product group</td>
<td>17</td>
</tr>
</tbody>
</table>
Contents

2.6 Conjugate elements and classes 18
2.7 Examples of classes 19
 2.7.1 The rotation group \(\mathcal{R}_3 \) 19
 2.7.2 The finite group of rotations \(D_3 \) 20
 2.7.3 The symmetric group \(\mathcal{S}_3 \) 21
2.8 The class structure of product groups 21
2.9 The group rearrangement theorem 22
Bibliography 22
Problems 22

3 Linear Algebra and Vector Spaces 24
3.1 Linear vector space 25
3.2 Examples of linear vector spaces 27
 3.2.1 Displacements in three dimensions 27
 3.2.2 Displacement of a set of \(N \) particles in three dimensions 28
 3.2.3 Function spaces 28
 3.2.4 Function space with finite dimension 29
 3.2.5 Wave functions 29
3.3 Linear operators 30
3.4 The multiplication, inverse and transformation of operators 32
3.5 The adjoint of an operator—unitary and Hermitian operators 34
3.6 The eigenvalue problem 35
3.7 Induced transformation of functions 36
3.8 Examples of linear operators 38
 3.8.1 Rotation of vectors in the xy-plane 38
 3.8.2 Permutations 39
 3.8.3 Multiplication by a function in function space 39
 3.8.4 Differentiation in function space 40
 3.8.5 Induced transformation of functions 40
 3.8.6 Further example of induced transformation of functions 41
 3.8.7 Transformed operator 41
Bibliography 42
Problems 42

4 Group Representations 43
4.1 Definition of a group representation 43
4.2 Matrix representations 44
4.3 Examples of representations 45
 4.3.1 The group \(D_3 \) 45
 4.3.2 The group \(\mathcal{S}_2 \) 46
 4.3.3 Function spaces 47
4.4 The generation of an invariant subspace 48
4.5 Irreducibility 50
4.6 Equivalent representations 52
Contents

4.6.1 Proof of Maschke's theorem 53
4.7 Inequivalent irreducible representations 54
4.8 Orthogonality properties of irreducible representations 54
4.8.1 Proof of Schur's first lemma 58
4.8.2 Proof of Schur's second lemma 60
4.9 Characters of representations 60
4.10 Orthogonality relation for characters of irreducible representations 61
4.11 Use of group characters in reducing a representation 62
4.12 A criterion for reducibility 63
4.13 How many inequivalent irreducible representations?---the regular representation 64
4.14 The second orthogonality relation for group characters 66
4.15 Construction of the character table 67
4.16 Orthogonality of basis functions for irreducible representations 68
4.17 The direct product of two representations 70
4.18 Reduction of an irreducible representation on restriction to a subgroup 73
4.19 Projection operators 74
4.20 Irreducible sets of operators and the Wigner–Eckart theorem 78
4.21 Representations of direct product groups 81

Bibliography 83

Problems 83

5 Symmetry in Quantum Mechanics 85
5.1 Brief review of the framework of quantum mechanics 85
5.2 Definition of symmetry in a quantum system 89
5.3 Degeneracy and the labelling of energies and eigenfunctions 90
5.4 Selection rules and matrix elements of operators 91
5.5 Conservation laws 92
5.6 Examples 93
5.6.1 Symmetry group C_3 93
5.6.2 Symmetry group D_3 95
5.6.3 Symmetry group S_2 96
5.6.4 Symmetry group S_3 96
5.7 Use of group theory in a variational approximation 97
5.8 Symmetry-breaking perturbations 99
5.8.1 Examples 100
5.8.2 Magnitude of the splitting 101
5.9 The indistinguishability of particles 102
5.10 Complex conjugation and time-reversal

Bibliography 104

Problems 104

6 Molecular Vibrations 106
Contents

6.1 The harmonic approximation 107
6.2 Classical solution 108
6.3 Quantum mechanical solution 109
6.4 Effects of symmetry in molecular vibrations 110
6.5 Classification of the normal modes 113
 6.5.1 The water molecule 115
 6.5.2 The ammonia molecule 116
6.6 Vibrational energy levels and wave functions 117
6.7 Infrared and Raman absorption spectra of molecules .. 120
 6.7.1 Infrared spectra 120
 6.7.2 Raman spectra 121
6.8 Displacement patterns and frequencies of the normal modes 122
Bibliography ... 124
Problems ... 124

7 Continuous Groups and their Representations, Including Details of the Rotation Groups \mathbb{R}_2 and \mathbb{R}_3 125
7.1 General remarks 126
7.2 Infinitesimal operators 127
7.3 The group \mathbb{R}_2 130
 7.3.1 Irreducible representations 131
 7.3.2 Character 131
 7.3.3 Multiplication of representations 132
 7.3.4 Examples of basis vectors 132
 7.3.5 Infinitesimal operators 133
7.4 The group \mathbb{R}_3 134
 7.4.1 Infinitesimal operators 135
 7.4.2 Irreducible representations 137
 7.4.3 Characters 140
 7.4.4 Multiplication of representations 141
 7.4.5 Examples of basis vectors 143
 7.4.6 Irreducible sets of operators and the Wigner–Eckart theorem 146
 7.4.7 Equivalent operators 147
7.5 The Casimir operator 148
7.6 Double-valued representations 150
7.7 The complex conjugate representation 153
Bibliography ... 153
Problems ... 154

8 Angular Momentum and the Group \mathbb{R}_3 with Illustrations from Atomic Structure 156
8.1 Rotational invariance and its consequences 156
8.2 Orbital angular momentum of a system of particles ... 158
8.3 Coupling of angular momenta 159
8.4 Intrinsic spin 161
8.5 The hydrogen atom 166
| Contents |
|-----------------|-------|
| 8.6 The structure of many-electron atoms | ix |
| 8.6.1 The Hamiltonian | 170 |
| 8.6.2 The Pauli principle and shell filling | 170 |
| 8.6.3 Atoms with more than one valence electron: \(LS \) coupling | 171 |
| 8.6.4 Classification of terms | 173 |
| 8.6.5 Ordering of terms | 176 |
| **Bibliography** | 179 |
| **Problems** | 181 |
| 9 Point Groups with an Application to Crystal Fields | 181 |
| 9.1 Point-group operations and notation | 183 |
| 9.2 The stereogram | 184 |
| 9.3 Enumeration of the point groups | 184 |
| 9.3.1 Proper groups | 185 |
| 9.3.2 Improper groups | 186 |
| 9.4 The class structure of the point groups | 190 |
| 9.4.1 Proper point groups | 192 |
| 9.4.2 Improper point groups | 193 |
| 9.5 The crystallographic point groups | 193 |
| 9.6 Irreducible representations for the point groups | 196 |
| 9.7 Double-valued representations of the point groups | 197 |
| 9.8 Time-reversal and magnetic point groups | 199 |
| 9.9 Crystal field splitting of atomic energy levels | 201 |
| 9.9.1 Definition of the physical problem | 202 |
| 9.9.2 Deduction of the manner of splitting from symmetry considerations | 202 |
| 9.9.3 Effect of a magnetic field | 204 |
| **Bibliography** | 209 |
| **Problems** | 210 |
| 10 Isospin and the Group \(SU_2 \) | 211 |
| 10.1 Isospin in nuclei | 213 |
| 10.1.1 Isospin labelling and degeneracies | 214 |
| 10.1.2 Splitting of an isospin multiplet | 215 |
| 10.1.3 Selection rules | 218 |
| 10.2 Isospin in elementary particles | 220 |
| 10.2.1 Collisions of \(N \)-mesons with nucleons | 221 |
| 10.3 Isospin symmetry and charge-independence | 223 |
| **Bibliography** | 224 |
| **Problems** | 224 |
| 11 The Group \(SU_3 \) with Applications to Elementary Particles | 226 |
| 11.1 Compilation of some relevant data | 227 |
| 11.2 The hypercharge | 230 |
| 11.3 Baryon number | 231 |
| 11.4 The group \(SU_3 \) | 232 |
| 11.5 Subgroups of \(SU_3 \) | 233 |
Contents

11.6 Irreducible representations of SU_3
 11.6.1 Complex conjugate representations 241
 11.6.2 Multiplication of representations 242
11.7 Classification of the hadrons into SU_3 multiplets 243
11.8 The mass-splitting formula 244
11.9 Electromagnetic effects 247
11.10 Casimir operators 248
Bibliography 249

Problems 249

12 Supermultiplets in Nuclei and Elementary Particles—the Groups SU_4 and SU_6 and Quark Models
 12.1 Supermultiplets in nuclei 251
 12.2 Supermultiplets of elementary particles 252
 12.3 The three-quark model 255
 12.4 The nine-quark model 257
 12.5 Charm 260
Addendum (mid-1978) 262
Addendum (late 1983) 263
Bibliography 264

Problems 264

Appendix 1 Character Tables for the Irreducible Representations of the Point Groups 265
Appendix 2 Solutions to Problems in Volume 1 275

Index to Volumes 1 and 2 (adjacent to p. 280) 1
Contents of Volume 2

Preface

13 Electron States in Molecules
 13.1 Linear combinations of atomic orbitals (LCAO) 281
 13.2 Examples 282
 13.3 Selection rules for electronic excitations in molecules 287
 Bibliography 288

Problems 288

14 Symmetry in Crystalline Solids
 14.1 Translational symmetry in crystals 289
 14.2 The translation group $S(a_1, a_2, a_3)$ 290
 14.3 The Brillouin zone and some examples 293
 14.4 Electron states in a periodic potential 294
 14.4.1 The nearly-free electron model 295
 14.4.2 Metals and insulators 299
 14.4.3 The tight-binding method 302
 14.5 Lattice vibrations 306
 14.5.1 The one-dimensional monatomic lattice 306
 14.5.2 Three-dimensional crystals with several atoms per unit cell 309
 14.6 Spin waves in ferromagnets 311
Contents

14.7 Excitons in insulators (Frenkel excitons) 313
14.8 Selection rules for scattering 314
14.9 Space groups
 14.9.1 Irreducible representations of space groups 316
 14.9.2 Application to electron states 320
 14.9.3 Other excitations 323
Bibliography 323
Problems 324

15 Space and Time
15.1 The Euclidean group \mathcal{E}
 15.1.1 Translations 326
 15.1.2 The group operators 328
 15.1.3 The irreducible representations 328
 15.1.4 The group \mathcal{E}_3 331
 15.1.5 The physical significance of the Euclidean group \mathcal{E}_3 331
 15.1.6 Scalar products and normalisation of basis vectors 333
15.2 The Lorentz group \mathcal{L}
 15.2.1 The Lorentz transformation 334
 15.2.2 The regions of space–time 339
 15.2.3 Physical interpretation of the Lorentz transformation 340
 15.2.4 Infinitesimal operators 343
 15.2.5 The irreducible representations 344
15.3 The Lorentz group with space inversions \mathcal{L}'
15.4 Translations and the Poincaré group \mathcal{P}
 15.4.1 Translations in space–time 349
 15.4.2 The Poincaré group and its representations 351
 15.4.3 Casimir operators 356
 15.4.4 Definition of scalar product 359
15.5 The Poincaré group with space inversions \mathcal{P}'
15.6 The Poincaré group with time inversion \mathcal{P}^t
15.7 Physical interpretation of the irreducible representations of the Poincaré group
 15.7.1 Mass 363
 15.7.2 Spin 364
 15.7.3 Parity 366
 15.7.4 Time-reversal 368
 15.7.5 Some consequences of time-reversal symmetry 369
15.8 Single-particle wave functions and the wave equations
 15.8.1 The group \mathcal{P}_2 375
 15.8.2 The group \mathcal{P}_3 377
 15.8.3 The Poincaré group with $s = 0$—the Klein–Gordon equation 379
 15.8.4 The Poincaré group with $s = \frac{1}{2}$—the Dirac equation 380
Contents

15.8.5 Particles with zero mass and spin $|\mathbf{m}| = \frac{1}{2}$ - the Weyl equation 387
15.8.6 Particles with zero mass and spin $|\mathbf{m}| = 1$ - the Maxwell equations 389

Bibliography

Problems

16 Particles, Fields and Antiparticles
16.1 Classical mechanics of particles
16.1.1 Lagrange formalism 394
16.1.2 Hamiltonian formalism 394
16.1.3 Examples from relativistic mechanics 396
16.2 Classical mechanics of fields
16.2.1 The transformation of fields 398
16.2.2 The Lagrange equation for fields 399
16.2.3 The electromagnetic field 400
16.3 Quantum fields
16.3.1 Second quantisation 402
16.3.2 Field operators 404
16.3.3 The physical role of field operators 405
16.3.4 Causality and the spin-statistics theorem 408
16.3.5 Antiparticles 409
16.3.6 Charge conjugation and the PCT theorem 411
16.3.7 Field for particles with non-zero spin 413

Bibliography

Problems

17 The Symmetric Group S_n
17.1 Cycles 425
17.2 The parity of a permutation 426
17.3 Classes 427
17.4 The identity and alternating representations -- symmetric and antisymmetric functions 428
17.5 The character table for irreducible representations 430
17.6 Young diagrams 431
17.7 The restriction from S_n to S_{n-1} 434
17.8 The basis vectors of the irreducible representations 435
17.9 Examples of basis vectors and representation matrices 436
17.10 The direct product of two representations 438
17.11 The outer product of two irreducible representations 439
17.12 Restriction to a subgroup and the outer product 441
17.13 The standard matrices of the irreducible representations 443
17.14 The class operator $\sum_{i<j} T(P_{ij})$ 450

Bibliography

Problems

18 The Unitary Group U_N 452
Contents

18.1 The irreducible representations of U_N
- 453

18.2 Some examples
- 456

18.3 The chain of subgroups $U_N \rightarrow U_{N-1} \rightarrow U_{N-2} \rightarrow \ldots \rightarrow U_2 \rightarrow U_1$
- 457

18.4 A labelling system for the basis vectors
- 459

18.5 The direct product of representations of U_N
- 461

18.6 The restriction from U_N to its subgroup SU_N
- 462

18.7 The special cases of SU_2, SU_3, and SU_4
- 464

18.8 The infinitesimal operators of U_N
- 466

18.9 The complex conjugate representations of U_N and SU_N
- 467

18.10 The use of the group U_N in classifying many-particle wave functions

18.10.1 The use of subgroups of U_N
- 471

18.11 Characters
- 475

18.12 Group integration and orthogonality
- 476

18.13 The groups SU_2, SU_3, and SU_4

18.13.1 The parameters of SU_2
- 478

18.13.2 Infinitesimal operators and irreducible representations of SU_3
- 480

18.13.3 Connection between the groups SU_3 and SU_2
- 480

18.13.4 Explicit formula for the parameters of a product of rotations
- 482

18.13.5 Examples of SU_2 basis vectors
- 482

Bibliography
- 483

Problems
- 483

19 Two Familiar 'Accidental' Degeneracies—the Oscillator and Coulomb Potentials
- 485

19.1 The three-dimensional harmonic oscillator for one particle
- 486

19.2 The three-dimensional harmonic oscillator for many particles
- 491

19.3 The harmonic oscillator in n dimensions
- 492

19.4 The symmetry group of the Coulomb potential

19.4.1 The groups SU_4 and Sp
- 494

19.4.2 The classification of states of the Coulomb potential
- 495

Bibliography
- 496

Problems
- 497

20 A Miscellany
- 498

20.1 Non-invariance groups
- 498

20.2 The Jahn–Teller effect and spontaneously broken symmetries

20.2.1 The adiabatic approximation
- 502

20.2.2 The role of symmetry
- 503

20.2.3 Spontaneous symmetry breaking
- 505

20.3 Normal subgroups, semi-direct products and little groups
- 507

12
Contents

20.4 The classification of Lie groups 510
20.5 The rotation matrices 519
Bibliography 522
Problems 523

Appendix 3 Topics in Representation Theory 524
A.3.1 Symmetrised products of representations 524
A.3.2 Use of a subgroup in reducing product representations 527
A.3.3 Class multiplication 529

Appendix 4 Some Results Pertaining to the Group \mathfrak{so}_3 531
A.4.1 An integral over three spherical harmonics 531
A.4.2 The spherical harmonic addition theorem 532
A.4.3 Group integration 533

Appendix 5 Techniques in Atomic Structure Calculations 539
A.5.1 Term energies for p^2 and p^5 configurations 539
A.5.2 Recoupling coefficients (6j- and 9j- symbols) 543
A.5.3 Transition strengths 547
A.5.4 The crystal field potential 549
A.5.5 Use of symmetry to deduce ratios of splittings 550

Problems on appendices 4 and 5 553

Appendix 6 Solutions to Problems in Volume 2 555

Index to Volumes 1 and 2 (adjacent to p. 558) 1
Preface to Volume 1

One cannot study any physical system for very long before finding regularities or symmetries which demand explanation and, even though the system may be complex, one expects that the regularities will have a simple explanation. This basic optimism, which pervades not only physics but science in general, is justified in the case of symmetries because there is a theory of symmetry which has application in almost all branches of physics and especially in quantum physics. The object of our book is to describe the theory of symmetry and to study its applications in a wide variety of physical systems.

The book has grown out of several lecture courses which we have given at the University of Sussex during the past ten years. One was a general introductory course on symmetry given to third-year undergraduates, one a postgraduate course on symmetry in solid-state physics and one a postgraduate course on symmetry in atomic, nuclear and elementary-particle physics. As a result, the book may be used by students in any of these categories. We regard chapters 1–5 (inclusive) as a minimum selection for any student wishing to study symmetry, although those students who have taken an undergraduate course on linear algebra will find that much of chapter 3 is familiar and may be read quite rapidly. The remaining chapters 6–11 in volume 1 cover a wide range of applications which is quite sufficient for an undergraduate course. One could even be selective within the first volume by omitting chapters 10–12 on nuclear and elementary particle physics or
alternatively by omitting chapters 6 and 9 on the point groups. We would expect the second volume to be used for serious study at the postgraduate level and for occasional reference by the more inquisitive undergraduate.

The first chapter of volume 1 introduces the concept of symmetry with some very simple examples and lists the general consequences. We then leave physics aside for three chapters while preparing the mathematical tools to be used later. The most important of these are group theory and linear algebra which are described in chapters 2 and 3. The fourth chapter brings together these two ideas in a study of group representations and it is this aspect of group theory which is most used in the theory of symmetry. We return to physics in chapter 5 with a brief summary of the basic ideas of quantum mechanics and a general description of the effects of symmetry in quantum systems. The remainder of the book is concerned with applications to different physical systems and the study in greater detail of the relevant groups. We cover a broad range of applications from molecular vibrations to elementary particles and in each case we aim to introduce sufficient background description to enable the reader who has no prior knowledge of that particular physical system to appreciate the role being played by symmetry. Each application is reasonably self-contained and the more sophisticated systems are left until the later chapters. The vibration of molecules is the first phenomenon studied in detail, in chapter 6, and here we are able to illustrate the results of symmetry in classical mechanics before going over to the quantised theory. Chapters 7 and 8 describe the symmetry with respect to rotations with applications to the structure of atoms. It is at this point that we meet for the first time a continuous group, with an infinite number of elements, or symmetry operations, and the general properties of such groups are described. Chapter 9 describes in some detail the 'point groups', which contain only a finite number of rotations, and uses them to study the influence of a crystal field on atomic states. In chapters 10, 11 and 12 we move on to the more abstract symmetries encountered in nuclear and elementary particle physics but make use of the same general theory that was used for the more concrete applications in earlier chapters. We introduce the groups of unitary transformations in two, three, four and six dimensions and use them to describe the observed symmetry between neutrons and protons and the regularities amongst some of the recently discovered short-lived elementary particles. The ideas of 'strangeness' and 'quarks' are explained.

Volume 2 begins with a further application of the use of 'point groups'—to the motion of electrons in a molecule—and then, in chapter 14, moves away from symmetries with a fixed point to study discrete translations and their applications to crystal structure. The theory of relativity is of profound importance in the philosophy of physics and, when speeds become comparable with that of light, it has practical importance. For all the systems discussed in volume 1 we are able to ignore relativity because the speeds of the particles involved are sufficiently small. Chapter 15 describes the symmetry in four-dimensional space-time which is the origin of relativity theory and discusses its consequences, especially in relation to the classification of elementary
Preface

Particles. The concepts of momentum, energy, mass and spin are interpreted in terms of symmetry using the Lorentz and Poincaré groups and a natural place is found in the theory for particles, like the photon, with zero mass. Chapter 16 is concerned with fields, in contrast to the earlier chapters which dealt with particles or systems of particles. We first describe classical fields, such as the electromagnetic field, using four-dimensional space-time. This is followed by a brief account of the theory of relativistic quantum fields which provides a framework for the creation and annihilation of particles and the existence of antiparticles. Chapters 17 and 18 contain details of two general groups, the 'symmetric' group of all permutations of \(n \) objects and the 'unitary' group in \(N \) dimensions, and an intimate relation between these two groups is discussed. Particular cases of these two groups have been met earlier. Chapter 19 describes some unexpected symmetries in two familiar potentials, the Coulomb and the harmonic oscillator potentials, and a number of small, unconnected, but interesting topics are collected into the last chapter.

The text includes worked examples and a selection of problems with solutions. A bibliography of references for further reading is given at the end of each chapter for those who wish either to follow the physical applications into more detail or to study some of the mathematical questions to a greater depth.

To aid the reader we have followed the standard convention of using italic type for algebraic symbols such as \(x \), \(y \) and \(z \), whereas operators are distinguished by the use of roman type. An operator or matrix will be written \(T \) but its matrix elements \(T_{ij} \), which are numbers, will be in italic type. In addition, bold face type will be used for vectors and in chapters 15 and 16 of volume 2 we meet four-vectors which are printed with a circumflex.

Brighton, Sussex, 1979

J. P. E.

F. G. D.
1

Introduction

1.1 The place of symmetry in physics

According to the Concise Oxford Dictionary, symmetry is defined as 'right proportion between the parts of the body or any whole, balance, congruity, harmony, keeping'. Although there is much complex detail in physics there is also much beauty and simplicity and it is the symmetry in physical laws and physical systems which is largely responsible for this. Consequently, symmetry plays an important role in physics and one which is increasing in importance with modern developments. It is the purpose of this book to explain in general terms why the existence of symmetry leads to a variety of physical simplicities in both classical and quantum mechanics. To illustrate the general results we shall refer to simple properties of molecules, crystals, atoms, nuclei and elementary particles. Although these physical systems are so obviously different from one another, nevertheless the same theory of symmetry may be applied to them all. The study of symmetry, therefore, helps to unify physics by emphasising the similarity between different fields.

It is true that symmetry plays a part in both classical and quantum physics, but it is in the latter that most interest lies. There are several reasons for this. The first is that there is a much greater scope for symmetry to exist in the microscopic domain since, for example, one electron is identical with any other
Introduction

1.1

An electron and one atom of carbon (say) is identical with any other. The second reason is that at the microscopic level one must use quantum mechanics which is inherently more complicated than classical mechanics and so provides more scope for simplification through symmetry arguments. For example, a particle is described by a wave function rather than a single position. One further reason is that the structure of atomic and subatomic systems is now one of the exciting frontiers of science and the ideas of symmetry are helping to create order out of apparent chaos.

Throughout physics one uses mathematics as the tool with which to investigate the consequences of some assumed theory or model. For example, in the motion of a particle of mass \(M \) in one dimension \(x \) under some force \(f(x) \) the physical law (Newtonian theory) tells us that \(f(x) = M (d^2 x / dt^2) \). To find the position \(x(t) \), as a function of time, given \(f(x) \), we must solve this differential equation, putting in the initial values of \(x \) and \(dx/dt \). Thus, in Newtonian mechanics, the differential and integral calculus is the appropriate tool. In studying the symmetry of physical systems we are asking about their behaviour under transformations. For example, if a particle moves in one dimension under the influence of a potential \(V(x) \), that potential may have reflection symmetry in the origin, i.e. \(V(-x) = V(x) \). In this case the potential is said to be invariant (unchanged) under the transformation which replaces \(x \) by \(-x\). In another example, that of a particle moving in three dimensions, the potential may have spherical symmetry, which means that, in spherical polar coordinates, the potential is independent of angle and may be written \(V(r) \). In this case the potential is invariant under any of the transformations which rotate through any angle about any axis through the origin—an infinite number of transformations!

To investigate the physical consequences of the symmetry of a system we must, therefore, learn something about transformations and in particular about the set (collection) of transformations which leave some function, like the potential, invariant. The theory of such sets of transformations is called 'group theory' by mathematicians and this is the appropriate tool for the physicist to use in studying symmetry.

It is fascinating to draw an analogy between the use of calculus in classical mechanics and the use of group theory in quantum mechanics. Historically the discovery of Newton's laws and the invention of the calculus occurred at about the same time in the seventeenth century. Although the ideas of group theory were introduced into mathematics as early as 1810 it was not until the 1920s that the theory of group representations, which is crucial to the study of symmetry, was developed. This was the very time when physicists were formulating the quantum theory. In fact the significance of symmetry in quantum mechanics was realised very early in the classic works of E. Wigner, in 1931, H. Weyl, in 1928, and Van-der-Waerden, in 1932.

There have always been those who have argued that it is unnecessary to use group theory in quantum mechanics. In a sense this is true, since group theory itself is built from elementary algebraic steps. However, the investment of
effort in learning to use the sophisticated tool which is group theory is soon
rewarded by handsome dividends of simplification and unification in the study
of complex quantum mechanical systems. After all, one could argue that the
calculus is not necessary in classical mechanics. For example, geometrical
arguments could be used to show that the inverse square law of gravitational
attraction leads to elliptical orbits. In fact, Newton originally used such a
method but in modern times we understand this result through the solution
of a differential equation. Looking ahead, it is exciting to speculate that
further major advances in mathematics and physics may go hand in hand in
the future.

1.2 Examples of the consequences of symmetry

To whet the appetite we now list a number of physical systems which possess
symmetry and we point out some features of their behaviour which are direct
consequences of the symmetry. Simpler examples are given first, although in
some cases we are able to relate the behaviour to the symmetry without
developing new methods this is, of course, not always possible. It is the purpose
of this book to describe generally the consequences of symmetry and it will not
be until much later in the book that we shall be in a position to understand and
to predict the behaviour of systems with intricate symmetries.

1.2.1 One particle in one dimension (classical)

A particle of mass M, moving in one dimension under the influence of a
potential $V(x)$, will have its motion governed by the equation

$$M \ddot{x} = -\frac{dV}{dx}$$ \hspace{1cm} (1.1)

Suppose now that $V(x)$ is a constant, independent of x; in other words that it is
invariant under translation. Then clearly $M \ddot{x} = 0$ and, integrating, gives $M \dot{x} = C$, showing the conservation (constancy) of linear momentum $M \dot{x}$.

1.2.2 One particle in two dimensions (classical)

In two dimensions the motion of the particle is governed by the two equations

$$M \ddot{x} = -\frac{dV}{dx} \text{ and } M \ddot{y} = -\frac{dV}{dy}$$ \hspace{1cm} (1.2)

Suppose now that $V(x, y)$ is invariant with respect to rotation about the origin;
in other words that $V(x, y)$ is independent of the polar angle θ if expressed in
terms of the polar coordinates r, θ rather than the cartesian x and y. In this case
$\frac{\partial V}{\partial \theta} = 0$. However,

$$\frac{\partial V}{\partial \theta} = \frac{\partial V}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial V}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial V}{\partial x} x + \frac{\partial V}{\partial y} y$$
and using equation (1.2)

\[
\frac{\partial V}{\partial \theta} = \mathbf{M}(y \mathbf{x} - x \mathbf{y}) = \mathbf{M} \frac{d}{dt}(y \mathbf{x} - x \mathbf{y})
\]

so that the invariance \(\frac{\partial V}{\partial \theta} = 0 \) implies the constancy of the quantity \(\mathbf{M}(y \mathbf{x} - x \mathbf{y}) \) which is the moment of momentum (or angular momentum) about an axis through the origin and perpendicular to the plane.

If the particle were free to move in three dimensions in a potential which was invariant with respect to rotations about any axis then this argument shows that any component of the angular momentum is constant. In other words, for a spherically symmetric potential, both the magnitude and the direction of the angular momentum are conserved.

1.2.3 Two particles connected by springs (classical)

Two particles of equal mass \(M \) are connected to each other and to fixed supports by equal collinear springs with spring constant \(\lambda \). Let the natural length of the springs be \(a \) and the supports a distance \(3a \) apart. Denote the displacements of the two particles from their equilibrium positions by \(x_1 \) and \(x_2 \). Although the general displacement, illustrated in figure 1.1, has no

![Figure 1.1](image)

Figure 1.1

symmetry it is intuitively clear that, in some sense, the system has reflection symmetry about the centre. In fact, both the kinetic and potential energies

\[
T = \frac{1}{2} M (x_1^2 + x_2^2) \quad \text{and} \quad V = \frac{1}{2} \lambda \{x_1^2 + x_2^2 + (x_1 + x_2)^2\}
\]

are invariant with respect to the interchange of \(x_1 \) and \(x_2 \), which is the transformation of coordinates \(x_1 \) and \(x_2 \) produced by a reflection in the line AB.

The consequences of symmetry are not very dramatic in this case, but the generalisation to the vibration of atoms about their equilibrium positions in a molecule is of considerable importance. It is therefore worth while to solve
We also distinguish between two different uses of symmetry: symmetry principles versus symmetry arguments. In section 3 we change tack, stepping back from the details of the various symmetries to make some remarks of a general nature concerning the status and significance of symmetries in physics. Finally, in section 4, we outline the structure of the book and the contents of each part.

The meanings of symmetry. When considering the role of symmetry in physics from a historical point of view, it is worth keeping in mind two preliminary distinctions: The first is between implicit and explicit uses of the notion. Symmetry considerations have always been applied to the description of nature, but for a long time in an implicit way only. Reduction is of two sorts, Lagrangian and Hamiltonian. In each case one has a group of symmetries and one attempts to pass the structure at hand to an appropriate quotient space. Within each of these broad classes, there are additional subdivisions; for example, in Hamiltonian reduction there is symplectic and Poisson reduction. These subjects arose from classical theorems of Liouville and Jacobi on reduction of mechanical systems by $2k$ dimensions if there are k integrals in involution. Excluding discontinuities, cavitation, and fluid interpenetration, and we ask that \int be volume-preserving to correspond to the assumption of incompressibility. A motion of a fluid is a family of time-dependent elements of G, which we write as $x = \cdot$. This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum