A Multilevel Approach to the Study of Motor Control and Learning
Second Edition

Debra J. Rose
California State University, Fullerton

Robert W. Christina
University of North Carolina, Greensboro
CONTENTS

Preface xiii

SECTION ONE: MOTOR CONTROL

Chapter 1: Introduction to Motor Control 1

Defining Motor Control 2
Open- and Closed-Loop Motor Control 4

Open-Loop Motor Control 4
Use of Open- versus Closed-Loop Motor Control 6

Theories of Motor Control 7

Reflex Theories 7
Hierarchical Theories 9
Dynamical and Ecological Approaches 14

Does One Theoretical Approach Better Explain How Movements Are Controlled? 19

Characteristics of Human Action 21

Flexibility 21
Uniqueness 22
Consistency and Modifiability 23

Does One Theory of Motor Control Better Explain the Characteristics of Skilled Actions? 23

The Degrees-of-Freedom Problem 26

Summary 29

Important Terminology 29

Suggested Further Reading 30

Test Your Understanding 30

Chapter 2: Scientific Measurement and Motor Control 31

Psychological Measures 32

Response Outcome Measures 32
Response Process Measures 41

Neurological Measures 51

Intracellular Recordings 52
Lesions and Ablations 52

Brain Mapping and Scanning Techniques 53
Summary 55
Important Terminology 56
Suggested Further Reading 57
Test Your Understanding 57
Practical Activities 58

Chapter 3: Somatosensory Contributions to Action 59
General Properties of Sensory Receptors and Afferent Pathways 60
 Adequate Stimulation 60
 Intensity Coding 61
 Sensory Adaptation 61
The Transmission and Integration of Sensory Input 63
Somatosensation 65
 Cutaneous Receptors 66
 Proprioceptors 67
Transmission of Somatosensory Input 72
 Dorsal Column System 72
 Spinocerebellar Tract 74
 Anterolateral System 74
 Somatosensory Cortex 76
Disorders of the Somatosensory System 77
Application of Theory 79
The Conscious Sensation of Movement 80
 Afferent Sources of Kinesthesis 80
The Conscious Sensation of Muscular Effort 83
Practical Applications 84
The Role of Feedback in Controlling Actions 86
 Knowledge of Body Position 86
 Planning and Modification of Action Plans 86
 Learning or Relearning Movements 87
Errors in Performance 88
Summary 88
Important Terminology 89
Suggested Further Reading 90
Test Your Understanding 90
Practical Activities 91
Chapter 4: Visual and Vestibular System
Contributions to Action 93

Neuromotor Processing of Vision 94
 Reception of Visual Input 94
 Transmission to the Brain 96
 Topographic Organization in the Visual System 97
 The Control of Eye Movements 97
Two Visual Systems? 99
 Two Visual Systems and Motor Control 99
Psychological Studies of Perception and Action 100
 Contrasting Theories of Visual Perception 100
Visual Guidance of Action 103
 Reaching and Grasping 103
 Standing Balance 104
 Locomotion 105
 Jumping from Different Heights 107
 Catching Objects 107
 Hitting Objects 108
 Time-to-Contact Information 108
 Visual Dominance 111
 Role of Vision in Performance of Sport Skills 111
Disorders of the Visual System 113
Vestibular System 114
 Anatomy of the Vestibular System 114
 Peripheral Sensory Reception 116
 Ascending Pathways 117
 Descending Pathways 118
 Vestibular-Visual Interactions 119
 Adaptability of the Vestibular Ocular Reflex 119
 Vestibular Contributions to Equilibrium 120
Disorders of the Vestibular System 121
Summary 123
Important Terminology 124
Suggested Further Reading 125
Test Your Understanding 125
Practical Activities 126
Contents

Chapter 5: Developing and Executing a Plan of Action 127
Planning the Action 128
 Making the Decision to Act 128
 Developing a General Plan 129
 Adding Details to the Plan 129
 Executing the Plan of Action 130
The Neuromotor Level of Analysis 130
 The Limbic System 132
 The Association Cortex 133
 The Projection System 133
 Motor Pathways 140
 The Spinal System 144
Moment-to-Moment Control 144
 Types of Motoneurons 145
 Muscle Activation and Force Production 146
 Musculoskeletal Contributions to Force 150
 Subconscious Control of Movement 151
 Solving the Motor Problem 157
Constraints on Action 158
 Intrinsic Capabilities of the Performer 158
 Task-Related Constraints 159
 Environmental Constraints 161
Summary 162
Important Terminology 163
Suggested Further Reading 163
Test Your Understanding 163
Practical Activities 164

SECTION TWO: MOTOR LEARNING

Chapter 6: Introduction to Motor Learning 166
Defining Motor Learning 167
 Motor Learning Is Inferred from Performance 168
 Performance Is Not a Perfect Index of Motor Learning 168
 Motor Learning Produces Reliable Performance Changes 169
 Motor Learning May Not Lead to Performance Improvement 170
 Motor Learning and Instruction, Practice, and/or Experience 171
Theories of Motor Learning 171
 Adams’ Closed-Loop Theory 172
 Schmidt’s Schema Theory 172
 Ecological Theories of Perception and Action 175
How Does Motor Learning Really Occur? 176
Stages of Motor Learning 178
 Fitts’ Three Stages of Learning 178
 A Neo-Bernsteinian Perspective 179
 Gentile’s Two-Stage Model 181
 Benefits of the Three Models of Motor Learning 183
Readiness for Motor Learning 184
 Developmental Qualities 185
 Learning Styles 186
 Motivational Qualities 189
Summary 190
Important Terminology 192
Suggested Further Reading 192
Test Your Understanding 192

Chapter 7: How Motor Learning Is Studied 194
Approaches to the Study of Motor Learning 195
 Traditional Approach 195
 Method versus Problem-Oriented Approach 197
 Doctrine of Disproof Approach 198
 Cooperative Approach between Basic and Applied Research 199
Assessing Motor Learning in Acquisition 200
 Performance Curves 200
 Setting a Criterion of Mastery 206
 Over-Learning 207
 Level of Automaticity 207
 Limitations of Assessing Motor Learning in Acquisition 208
Assessing Motor Learning in Post-Acquisition 209
 Retention Tests 209
 Maintaining the Learning–Retention Distinction 210
 Transfer Tests 210
 Development of a Knowledge Base 217
Contents

Measuring Learning-Related Changes in Perception and Cognition 218
 Expert–Novice Comparisons 212
 Visual Occlusion Techniques 214
 Eye Movement Recordings 215
 Pattern Recognition and Memory Recall Tests 215
 Development of a Knowledge Base 217

Measuring Learning-Related Changes in the Dynamics of Action 218
 Measures of Metabolic and Mechanical Efficacy 218

Identifying the Learning-Related Changes in Performance 219

Summary 220

Important Terminology 221

Suggested Further Reading 221

Test Your Understanding 221

Chapter 8: Setting the Stage for Motor Learning 223

Motivating People to Learn Motor Skills 224
 Goal Setting 225
 Praise and Criticism 226
 Success and Failure 227
 Self-Esteem 227
 Competition and Cooperation 228

Introducing and Explaining Movement Skills 228
 Setting the Stage for the Introduction 228
 Delivering the Introduction 229
 Delivering the Explanation 229
 Select the Best Words to Use in the Explanation 229
 Where to Direct the Learners’ Focus of Attention 230
 Relate What Is Being Taught to the Learners’ Background 231

Demonstrating the Skill to Be Learned 233
 Variables That Influence the Effectiveness of Modeling 234
 Evaluating the Effectiveness of a Model 242
 Guidelines for Using Modeling 243

Theoretical Explanations of the Modeling Effect 244
 Social Learning Theory 244
 Direct Perception Approach 245
Chapter 9: Organizing the Practice Environment 252

Amount of Practice 253
 Level of Original Learning 254
 Level of Over-Learning 255

Structuring the Practice Session 256
 Specificity of Practice 256
 Variability of Practice 262

Organizing the Practice Schedule 264
 Introducing Interference 264
 Influencing Factors 265

Theoretical Accounts of the Contextual Interference Effect 270
 Elaboration View 271
 Action-Plan Reconstruction View 271

Spacing/Distribution of Practice 272

Techniques for Enhancing the Effectiveness of Practice 274
 Guidance Techniques 274
 Whole-Task versus Part-Task Practice Strategies 275
 Part-Task Practice Methods 277
 Attentional Cuing and Whole Practice 277

Mental Practice 278
 Mental Practice Conditions 279
 Variables Limiting Our Understanding of Mental Practice Effects 282
 Physiological Basis of Mental Practice 284

Summary 286

Important Terminology 288
Suggested Further Reading 288
Test Your Understanding 289
Practical Activities 290
Chapter 10: Augmented Feedback and Motor Learning 291

Functions of Feedback in Motor Learning 293
 Feedback as Information to Correct Performance Errors 293
 Feedback as Positive Reinforcement to Strengthen Correct Performance 294
 Feedback as Negative Reinforcement to Strengthen Correct Performance 295
 Feedback as Punishment to Suppress Errors 296
 Feedback as Motivation for Motor Learning 296

Form of the Feedback 297
 Kinematic and Kinetic Visual Displays 298
 Videotape Feedback 299
 Augmented Sensory Feedback: Biofeedback 301

Precision of Augmented Feedback 303

Frequency of Augmented Feedback 303
 Fading-Frequency Schedules of Knowledge of Results 305
 Bandwidth Knowledge of Results 305
 Reversed Bandwith Knowledge of Results 307
 Summary Knowledge of Results 307
 Average Knowledge of Results 309
 Self-Regulated (Controlled) Augmented Feedback Schedules 312

Theoretical Explanations of the Frequency Effect 313
 Guidance Hypothesis 313
 Consistency Hypothesis 313

The Timing of Knowledge of Results 314

Summary 316

Important Terminology 318

Suggested Further Reading 319

Test Your Understanding 319

Chapter 11: Memory and Forgetting 321

Contemporary Concepts of Memory 322
 Atkinson and Shiffrin’s Multistore Model 323
 Levels-of-Processing Framework 325
 Neurobiology of Memory 326
Types of Memory 328

 Short-Term and Long-Term Memory 328
 Declarative and Procedural Memory 328
 The Relationship Between Learning and Memory 329

How Memory and Forgetting Are Studied 329

 What Retention Test Performance Tells Us 330
 Example of How the Retention of Motor Learning Is Studied 332
 Controlling for Variables That Produce Contaminating Effects 334
 Retention Test Measures 338

Theories of Forgetting 341

 Trace Decay Theory 341
 Interference Theory 342
 Retrieval Theory 344
 Which Theory Is Correct? 345

Factors That Influence Memory Skill 345

 Characteristics of the Movement Skill 346
 The Level of Original Learning 350
 The Learner 350

Disorders of Memory 352

Summary 353

Important Terminology 354

Suggested Further Reading 355

Test Your Understanding 355

Chapter 12: Transfer of Motor Learning 357

Transfer of Motor Learning Depends on Similarity 358

 Direction and Amount of Transfer 359
 Extent of Transfer 362
 Additional Factors Influencing Transfer 367

Transfer of General Factors 370

 Transfer of Principles 370
 Learning to Learn 371
 Two-Factor Theory 371

Types of Transfer 372

 Vertical Transfer 372
 Lateral Transfer 374
 Near and Far Transfer 379
The second edition of a *Multilevel Approach to Motor Control and Learning* expands upon the goal of the first edition: to provide a textbook for upper division undergraduate and entry-level graduate students in kinesiology that addresses motor control and motor learning concepts in the same text. What continues to differentiate this text from others that address one or both of these important subject areas is its multilevel approach. The content contained in this text is not only presented at a behavioral level of analysis but at a neurological level of analysis also. The significantly expanded content at both levels of analysis in the second edition will be particularly appropriate for students interested in pursuing postgraduate studies in health care professions such as physical therapy and/or professional careers in rehabilitation settings.

The book continues to be divided into two sections: Motor Control and Motor Learning. The first section—Chapters 1 through 5—presents an in-depth discussion of the prominent motor control theories and the scientific evidence in support of each theory and/or theoretical perspective. The underlying mechanisms that contribute to motor control are explored at both a behavioral and neurological level of analysis. At the completion of this section, the reader should have acquired a strong understanding of the behavioral and neurological processes that are involved in the planning and executing of many different movement skills.

The second section—Chapters 6 through 12—focuses on the theoretical concepts that underlie the acquisition, retention, and, in some cases, forgetting of learned movement skills. The multilevel theoretical approach is followed in this section also, as the behavioral changes associated with the learning of movement skills are once again linked to the underlying neurological mechanisms. This section of the book also emphasizes practical application as issues related to how motor skills should be introduced and practiced for optimal retention and transfer are discussed.

New to This Edition

1. A coauthor. It is a privilege and honor to be writing this second edition with my mentor, Dr. Robert Christina. Dr. Christina brings a wealth of knowledge and history of the field of motor control and learning that adds a richness and depth to the content presented in a number of chapters, but most notably the motor learning section of the book.

2. A new chapter that addresses the issue of the transfer of learning.

3. Major restructuring and reordering of chapters. The reordering of chapters provides a more cohesive discussion of the subject matter and was based on reviewer feedback and our own critical review of the first edition.

4. Expanded and updated content in all chapters. There is a more comprehensive discussion of the major theoretical approaches that have guided the research conducted in the areas of motor control and learning.
5. Addition of practical activities at the end of selected chapters. These provide the instructor with opportunities to engage the students in classroom activities that add a practical dimension to the theoretical content presented in the book.

6. Addition of more highlight boxes. Each addresses an important theoretical concept or controversy, a classic experiment, or examples of how motor control and learning theory has been applied to practice.

Pedagogical Features

The pedagogical features in the second edition have been expanded to include practical activities at the end of selected chapters, additional summary boxes that emphasize important points presented in the text, and new highlights in every chapter that address pivotal research findings from sport and clinical settings, important theoretical concepts, or practical applications of research.

Acknowledgements

This second edition would not have come to fruition without the significant contributions and support of my coauthor, Bob Christina, and the encouragement of so many of my colleagues in motor control and learning who adopted the first edition of this textbook over six years ago and kept asking when the second edition was going to be published. Of course, our book editors at Benjamin-Cummings kept asking us the same question, as we missed our submission deadlines on multiple occasions. Fortunately for us, Christina Pierson and Deirdre Espinoza both recognized that writing a textbook, even a second edition, is a serious undertaking and one that cannot be rushed if it is to be a product of which everyone can be proud. I would also personally like to thank my faculty colleagues in motor control and learning at Cal State-Fullerton, David Chen and Michelle Barr, who provided me with excellent feedback on the first edition based on their own personal teaching experiences using the book. Finally, I wish to thank each and every undergraduate and graduate student who I have taught in the six years since this book was first published. They have been my very best critics as the target audience for whom this book is intended. I hope that this second edition addresses many of their criticisms of the first edition.

Reviewers

Laurie Lundy-Ekman, Pacific University; Jeffrey M. Haddad, University of Massachusetts–Amherst; Rachel D. Seidler, University of Michigan; Amy Haufler, University of Maryland; Shane Frehlich, California State University–Northridge; Richard Stratton, Virginia Tech; Steven J. Radlo, Western Illinois University; Ann Gentile, Teachers College, Columbia University; Daniel Corcos, University of Illinois at Chicago; Qin Lai, Wayne State University; Lori Ploutz-Snyder, Syracuse University; Gabriele Wulf, University of Nevada–Las Vegas.
A multilevel approach integrates knowledge from the fields of cognitive psychology and neuroscience to provide the student with a more complete understanding of the multilevel processes (cognitive, neuromotor, and musculoskeletal) that contribute to the acquisition and control of movement skills. Controversy emerging from new perspectives that challenge existing viewpoints is presented along with the essence of each alternative viewpoint, to encourage students to think critically.

7. How Motor Learning Is Studied
8. Setting the Stage for Motor Learning
9. Organizing the Practice Environment
10. Augmented Feedback and Motor Learning
11. Memory and Forgetting
12. Transfer of Motor Learning and Learning

The breadth of the practical applications will appeal to readers preparing to enter professions that require a strong knowledge of motor control and learning principles. Movement, skill, cognitive psychology, neuroscience, transfer of motor learning, contemporary motor control theories, measurement techniques, application of theory, real-life aspects of motor control and learning. For all readers interested in issues relating to motor learning and control.