Business Data Analysis
SCH-MGMT 650

STATISTICS FOR MANAGERS USING Microsoft® Excel

David M. Levine • David F. Stephan
Timothy C. Krehbiel • Mark L. Berenson

Custom Edition for
UMASS-Amherst
Professor Robert Nakosteen

Taken from:

Statistics for Managers: Using Microsoft® Excel, Fifth Edition
by David M. Levine, David F. Stephan, Timothy C. Krehbiel, and Mark L. Berenson
Cover photo taken by Lauren Labrecque.

Taken from:

Statistics for Managers: Using Microsoft® Excel, Fifth Edition
by David M. Levine, David F. Stephan, Timothy C. Krehbiel, and Mark L. Berenson
Published by Prentice Hall
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from
the publisher.

This special edition published in cooperation with Pearson Custom Publishing.

The information, illustrations, and/or software contained in this book, and regarding the above-mentioned programs, are
provided “As Is,” without warranty of any kind, express or implied, including without limitation any warranty concerning the
accuracy, adequacy, or completeness of such information. Neither the publisher, the authors, nor the copyright holders shall be
responsible for any claims attributable to errors, omissions, or other inaccuracies contained in this book. Nor shall they be liable
for direct, indirect, special, incidental, or consequential damages arising out of the use of such information or material.

All trademarks, service marks, registered trademarks, and registered service marks are the property of their respective owners
and are used herein for identification purposes only.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

2008600006

KA

Please visit our web site at www.pearsoncustom.com
To our wives,
Marilyn L., Mary N., Patti K., and Rhoda B.,

and to our children
Sharyn, Mark, Ed, Rudy, Rhonda, Kathy, and Lori
ABOUT THE AUTHORS

The textbook authors meet to discuss statistics at Shea Stadium for a Mets v. Phillies game. Shown left to right, Mark Berenson, David Stephan, David Levine, Tim Krehbiel.

David F. Stephan is an instructional designer and lecturer who pioneered the teaching of spreadsheet applications to business school students in the 1980’s. He has over 20 years experience teaching at Baruch College, where he developed the first personal computing lab to support statistics and information systems studies and was twice nominated for his excellence in teaching. He is also proud to have been the lead designer and assistant project director of a U.S. Department of Education FIPSE project that brought interactive, multimedia learning to Baruch College.

Today, David focuses on developing materials that help users make better use of the information analysis tools on their computer desktops and is a co-author, with David M. Levine, of Even You Can Learn Statistics.
Timothy C. Krehbiel is Professor of Decision Sciences and Management Information Systems at the Richard T. Farmer School of Business at Miami University in Oxford, Ohio. He teaches undergraduate and graduate courses in business statistics. In 1996 he received the prestigious Instructional Innovation Award from the Decision Sciences Institute. In 2000 he received the Richard T. Farmer School of Business Administration Effective Educator Award. He also received a Teaching Excellence Award from the MBA class of 2000.

Mark L. Berenson is Professor of Management and Information Systems at Montclair State University (Montclair, New Jersey) and also Professor Emeritus of Statistics and Computer Information Systems at Bernard M. Baruch College (City University of New York). He currently teaches graduate and undergraduate courses in statistics and in operations management in the School of Business and an undergraduate course in international justice and human rights that he co-developed in the College of Humanities and Social Sciences.

Berenson received a B.A. in economic statistics and an M.B.A. in business statistics from City College of New York and a Ph.D. in business from the City University of New York.

Over the years, Berenson has received several awards for teaching and for innovative contributions to statistics education. In 2005 he was the first recipient of The Catherine A. Becker Service for Educational Excellence Award at Montclair State University.
BRIEF CONTENTS

Preface xix
1 INTRODUCTION AND DATA COLLECTION 1
2 PRESENTING DATA IN TABLES AND CHARTS 31
3 NUMERICAL DESCRIPTIVE MEASURES 95
4 BASIC PROBABILITY 147
5 SOME IMPORTANT DISCRETE PROBABILITY DISTRIBUTIONS 179
6 THE NORMAL DISTRIBUTION AND OTHER CONTINUOUS DISTRIBUTIONS 217
7 SAMPLING AND SAMPLING DISTRIBUTIONS 251
8 CONFIDENCE INTERVAL ESTIMATION 283
9 FUNDAMENTALS OF HYPOTHESIS TESTING: ONE-SAMPLE TESTS 327
10 SIMPLE LINEAR REGRESSION 369
11 INTRODUCTION TO MULTIPLE REGRESSION 429

Appendices A-F 471
Self-Test Solutions and Answers to Selected Even-Numbered Problems 513
Index 535

CD-ROM TOPICS

4.5 COUNTING RULES CD4-1
5.6 USING THE POISSON DISTRIBUTION TO APPROXIMATE THE BINOMIAL DISTRIBUTION CD5-1
6.6 THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION CD6-1
7.6 SAMPLING FROM FINITE POPULATIONS CD7-1
8.7 ESTIMATION AND SAMPLE SIZE DETERMINATION FOR FINITE POPULATIONS CD8-1
9.7 THE POWER OF A TEST CD9-1
Managing the Springville Herald 142
Web Case 142
References 142
Excel Companion to Chapter 3 143

4 BASIC PROBABILITY 147
Using Statistics @ The Consumer Electronics Company 148
4.1 Basic Probability Concepts 149
 Events and Sample Spaces 150
 Contingency Tables 151
 Simple (Marginal) Probability 151
 Joint Probability 152
 General Addition Rule 154
4.2 Conditional Probability 157
 Computing Conditional Probabilities 157
 Decision Trees 159
 Statistical Independence 161
 Multiplication Rules 162
 Marginal Probability Using the General Multiplication Rule 163
4.3 Bayes’ Theorem 166
4.4 Ethical Issues and Probability 171
4.5 *(CD-ROM Topic) Counting Rules 172
Summary 172
Key Equations 172
Key Terms 172
Chapter Review Problems 173
Web Case 176
References 176
Excel Companion to Chapter 4 177

5 SOME IMPORTANT DISCRETE PROBABILITY DISTRIBUTIONS 179
Using Statistics @ Saxon Home Improvement 180
5.1 The Probability Distribution for a Discrete Random Variable 180
 Expected Value of a Discrete Random Variable 181
 Variance and Standard Deviation of a Discrete Random Variable 182
5.2 Covariance and Its Application in Finance 184
 Covariance 184
 Expected Value, Variance, and Standard Deviation of the Sum
 of Two Random Variables 186
 Portfolio Expected Return and Portfolio Risk 186
5.3 Binomial Distribution 189
5.4 Poisson Distribution 197
5.5 Hypergeometric Distribution 201
5.6 *(CD-ROM Topic) Using the Poisson Distribution to Approximate
 the Binomial Distribution 204
Summary 204
Key Equations 204
Key Terms 205
Chapter Review Problems 206
Managing the Springville Herald 209
Web Case 209
References 210
Excel Companion to Chapter 5 211

6 THE NORMAL DISTRIBUTION AND OTHER CONTINUOUS DISTRIBUTIONS 217

Using Statistics @ OurCampus! 218
6.1 Continuous Probability Distributions 218
6.2 The Normal Distribution 219
Visual Explorations: Exploring the Normal Distribution 229
6.3 Evaluating Normality 234
Comparing Data Characteristics to Theoretical Properties 234
Constructing the Normal Probability Plot 236
6.4 The Uniform Distribution 238
6.5 The Exponential Distribution 241
6.6 (CD-ROM Topic) The Normal Approximation to the Binomial Distribution 243

Summary 243
Key Equations 243
Key Terms 243
Chapter Review Problems 244
Managing the Springville Herald 246
Web Case 246
References 246
Excel Companion to Chapter 6 247

7 SAMPLING AND SAMPLING DISTRIBUTIONS 251

Using Statistics @ Oxford Cereals 252
7.1 Types of Sampling Methods 252
Simple Random Samples 253
Systematic Samples 256
Stratified Samples 256
Cluster Samples 257
7.2 Evaluating Survey Worthiness 258
Survey Error 259
Ethical Issues 260
7.3 Sampling Distributions 261
7.4 Sampling Distribution of the Mean 262
The Unbiased Property of the Sample Mean 262
Standard Error of the Mean 264
Sampling from Normally Distributed Populations 265
Sampling from Non-Normally Distributed Populations—
The Central Limit Theorem 268
Visual Explorations: Exploring Sampling Distributions 270
7.5 Sampling Distribution of the Proportion 272
7.6 (CD-ROM Topic) Sampling From Finite Populations 275
Summary 275
Key Equations 276
Key Terms 276
Chapter Review Problems 276
Managing the Springville Herald 279
Web Case 279
References 280
Excel Companion to Chapter 7 281

8 CONFIDENCE INTERVAL ESTIMATION 283
Using Statistics @ Saxon Home Improvement 284
8.1 Confidence Interval Estimation for the Mean (σ Known) 285
8.2 Confidence Interval Estimation for the Mean (σ Unknown) 290
 Student's t Distribution 290
 Properties of the t Distribution 290
 The Concept of Degrees of Freedom 291
 The Confidence Interval Statement 292
8.3 Confidence Interval Estimation for the Proportion 296
8.4 Determining Sample Size 299
 Sample Size Determination for the Mean 300
 Sample Size Determination for the Proportion 302
8.5 Applications of Confidence Interval Estimation in Auditing 306
 Estimating the Population Total Amount 307
 Difference Estimation 308
 One-Sided Confidence Interval Estimation of the Rate of Noncompliance
 with Internal Controls 311
8.6 Confidence Interval Estimation and Ethical Issues 313
8.7 (CD-ROM Topic) Estimation and Sample Size Determination
 for Finite Populations 314
Summary 314
Key Equations 314
Key Terms 315
Chapter Review Problems 315
Managing the Springville Herald 320
Web Case 321
References 321
Excel Companion to Chapter 8 322

9 FUNDAMENTALS OF HYPOTHESIS TESTING:
 ONE-SAMPLE TESTS 327
Using Statistics @ Oxford Cereals, Part II 328
9.1 Hypothesis-Testing Methodology 328
 The Null and Alternative Hypotheses 328
 The Critical Value of the Test Statistic 330
 Regions of Rejection and Nonrejection 330
 Risks in Decision Making Using Hypothesis-Testing Methodology 331
9.2 Z Test of Hypothesis for the Mean (σ Known) 334
 The Critical Value Approach to Hypothesis Testing 334
 The p-Value Approach to Hypothesis Testing 337
 A Connection Between Confidence Interval Estimation and Hypothesis Testing 340
9.3 One-Tail Tests 342
 The Critical Value Approach 342
 The p-Value Approach 343
9.4 t Test of Hypothesis for the Mean (σ Unknown) 346
 The Critical Value Approach 347
 The p-Value Approach 349
 Checking Assumptions 349
9.5 Z Test of Hypothesis for the Proportion 353
 The Critical Value Approach 354
 The p-Value Approach 355
9.6 Potential Hypothesis-Testing Pitfalls and Ethical Issues 357
9.7 CD-ROM Topic) The Power of a Test 359

Summary 359
Key Equations 360
Key Terms 360
Chapter Review Problems 360
Managing the Springville Herald 363
Web Case 363
References 363
Excel Companion to Chapter 9 364

10 SIMPLE LINEAR REGRESSION 369

Using Statistics @ Sunflowers Apparel 370
10.1 Types of Regression Models 370
10.2 Determining the Simple Linear Regression Equation 372
 The Least-Squares Method 373
 Visual Explorations: Exploring Simple Linear Regression Coefficients 376
 Predictions in Regression Analysis: Interpolation Versus Extrapolation 377
 Computing the Y Intercept, b₀, and the Slope, b₁ 377
10.3 Measures of Variation 382
 Computing the Sum of Squares 382
 The Coefficient of Determination 384
 Standard Error of the Estimate 386
10.4 Assumptions 387
10.5 Residual Analysis 388
 Evaluating the Assumptions 388
10.6 Measuring Autocorrelation: The Durbin-Watson Statistic 392
 Residual Plots to Detect Autocorrelation 392
 The Durbin-Watson Statistic 394
10.7 Inferences About the Slope and Correlation Coefficient 397
 t Test for the Slope 397
 F Test for the Slope 398
Confidence Interval Estimate of the Slope (β_1) 400
r Test for the Correlation Coefficient 400

10.8 Estimation of Mean Values and Prediction of Individual Values 404
 The Confidence Interval Estimate 404
 The Prediction Interval 405

10.9 Pitfalls in Regression and Ethical Issues 408
Summary 412
Key Equations 413
Key Terms 414
Chapter Review Problems 414
Managing the *Springville Herald* 420
Web Case 421
References 421
Excel Companion to Chapter 10 422

11 INTRODUCTION TO MULTIPLE REGRESSION 429

Using Statistics @ OmniFoods 430

11.1 Developing a Multiple Regression Model 430
 Interpreting the Regression Coefficients 431
 Predicting the Dependent Variable Y 433

11.2 r^2, Adjusted r^2, and the Overall F Test 435
 Coefficient of Multiple Determination 436
 Adjusted r^2 436
 Test for the Significance of the Overall Multiple Regression Model 437

11.3 Residual Analysis for the Multiple Regression Model 439
11.4 Inferences Concerning the Population Regression Coefficients 441
 Tests of Hypothesis 441
 Confidence Interval Estimation 443

11.5 Testing Portions of the Multiple Regression Model 445
 Coefficients of Partial Determination 448

11.6 Using Dummy Variables and Interaction Terms in Regression Models 450
 Interactions 453

Summary 460
Key Equations 462
Key Terms 462
Chapter Review Problems 463
Managing the *Springville Herald* 466
Web Case 466
References 466
Excel Companion to Chapter 11 467

Appendices 471
A. Review of Arithmetic, Algebra, and Logarithms 472
B. Summation Notation 474
C. Statistical Symbols and Greek Alphabet 477
D. Student CD-ROM Contents 478
E. Tables 485
F. FAQs About Using Microsoft Excel and PHStat2 510

Self-Test Solutions and Answers to Select Even-Numbered Problems 513

Index 535

CD-ROM Topics
4.5 Counting Rules CD4-1
5.6 Using the Poisson Distribution To Approximate the Binomial Distribution CD5-1
6.6 The Normal Approximation to the Binomial Distribution CD6-1
7.6 Sampling From Finite Populations CD7-1
8.7 Estimation and Sample Size Determination for Finite Populations CD8-1
9.7 The Power of a Test CD9-1
He is nationally recognized as a leading innovator in statistics education and is the co-author of 14 books, including such best-selling statistics textbooks as 'Statistics for Managers Using Microsoft Excel', 'Basic Business Statistics: Concepts and Applications', 'Business Statistics: A First Course', and 'Applied Statistics for Engineers and Scientists Using Microsoft Excel and Minitab'.

He was an Instructor/Lecturer of Computer Information Systems at Baruch College (City University of New York) for over 20 years and also served as an Assistant to the Provost and to the Dean of the School of Business & Public Administration for computing.

Using Microsoft Excel, 5e
Prentice-Hall, Inc.
Linear Regression Example Data

House Price in $1000s (Y) Square Feet (X)
245 1400
312 1600
279 1700
308 1875
199 219
1550 405
324 2450
319 1425

255
Statistics for Managers Using Microsoft Excel, 5e
Prentice-Hall, Inc.
Linear Regression Example Scatterplot

House price model: scatter.

Total 9 Coefficients
Intercept Square Feet

Statistics for Managers Using Microsoft Excel, 5e
Prentice-Hall, Inc.
Comparing Standard Errors

SYX is a measure of the variation of observed Y values from the regression line Y = X. The magnitude of SYX should always be judged relative to the size of the. This text is the gold standard for learning how to use Microsoft Excel® in business statistics, helping students gain the understanding they need to be successful in their careers. The authors present statistics in the context of specific business fields; full chapters on business analytics further prepare students for success in their professions. Current data throughout the text lets students practice analyzing the types of data they will see in their professions. The friendly writing style include tips throughout to encourage learning. The book also integrates PHStat, an add-in that bolster