The Evolutionary Biology of the Threespine Stickleback

Edited by

MICHAEL A. BELL
Department of Ecology and Evolution
State University of New York at Stony Brook
Stony Brook, New York, USA

and

SUSAN A. FOSTER
Department of Biological Sciences
University of Arkansas
Fayetteville, Arkansas, USA

Oxford New York Tokyo
OXFORD UNIVERSITY PRESS
1994
Preface

The threespine stickleback, _Gasterosteus aculeatus_, has been used to address diverse problems in evolutionary biology and other subdisciplines in biology. Its wide use in biology largely reflects its favourable biological properties: its wide distribution, ecological versatility, extreme phenotypic variation, small size, and adaptability to the laboratory. However, as information about its biology has accumulated, the value of its intrinsic properties has been complemented by the accumulated knowledge which has facilitated subsequent research. Progress in our understanding of evolutionary processes is strongly dependent upon appreciation of the influences of multiple simultaneous effects, and consequently this accumulation of knowledge is crucial for the stickleback’s use in evolutionary biology.

The breadth and volume of research on the threespine stickleback has stimulated previous comprehensive works on this species complex. Wootton's (1976) excellent first book has been an indispensable introduction for students and a valuable general reference for those interested in stickleback biology. A stickleback bibliography by Coad (1981) and later books by Paepke (1983, in German) and another, more narrowly focused book by Wootton (1984) have further increased accessibility of information on stickleback biology. There is even a delightful (and largely accurate) children's book on the life cycle of the threespine stickleback (Lane 1981). The importance of the threespine stickleback for biological research as well as for an early introduction to natural history has become widely recognized.

It has already been eight years since the most recent review of stickleback biology was published. There have been major developments during this time, and continued progress in the use of the threespine stickleback for evolutionary studies requires a new synthesis of our knowledge. We believe that the explosive growth of knowledge on stickleback behaviour, ecology, physiology, and evolution would make it very difficult for a single author or even a small group of coauthors to undertake a book that would adequately treat the major areas of research on evolution of the threespine stickleback. However, we also did not believe that a disconnected collection of research papers on stickleback biology would meet this need.

Accordingly, we set out to develop a volume that would combine the consistency, integration, and coverage of a single-author book with the currency, depth of knowledge, and critical judgement that specialists could bring to their subjects. Most chapters review major research areas to which the chapter authors have contributed. Although many chapters include
unpublished data or information on the authors' research that will soon appear in the journal literature, most of the chapters take a broader perspective. The individual chapters of this book are the intellectual products of the chapter authors, but we have tried to assemble a cohesive set of topics that centre on evolutionary biology and include the major developments in threespine stickleback biology. Author and subject indexes at the back of the volume represent a further attempt to facilitate use of the volume as a general introduction to the evolutionary biology of the threespine stickleback. We have also tried to impose a reasonably uniform format, style, and terminology throughout the book, and to resolve factual inconsistencies or conflicts of interpretation between chapters by different authors. Indeed, we have taken the liberty to intrude deeply into the usual prerogatives of contributors to multiauthored books. We hope that this intrusion has resulted in a reasonable level of integration and consistency of presentation.

The diversity of information bearing on the evolutionary biology of the threespine stickleback would make it difficult even to render informed editorial judgement of the chapters in this book without the assistance of numerous reviewers. Therefore, we have exploited the generosity of many colleagues who agreed to write critiques of the chapters and to make suggestions for their improvement. We are most grateful for the help of these external reviewers, who were John A. Baker, Theo C.M. Bakker, George W. Barlow, Jeffrey L. Beacham, Mark Bevelhimer, Bertil Borg, Brian W. Coad, Richard G. Coss, John P. Ebersole, Harry W. Greene, Helga E. Guderley, Anne E. Houde, G.J. Kenagy, Manfred Milinski, Gary G. Mittelbach, Guillermo Orti, Donald H. Owings, Mark S. Ridgway, William J. Rowland, David L. Soltz, David W. Stephens, Nikki C. Toussley, David B. Wake, Jeffrey A. Walker, George C. Williams, David Sloan Wilson, and three anonymous reviewers. The reviewers often contributed extensive comments, and we are indebted to them for the numerous improvements to the book that resulted from their advice. However, their advice was not always followed by authors, and they are not responsible for the content of chapters. We are also most grateful to Nikki C. Toussley and Simon C. Nemtzov, who did most of the work of verifying, organizing, and integrating citations from individual chapters into a single list of references. Editorial work on this book was completed while M.A.B. was on sabbatical leave at St Francis Xavier University, and thanks are due to the University for supporting this work and to D. Max Blouw for his hospitality.

Stony Brook
Fayetteville
December 1993

M. A. B.
S. A. F.
Contents

List of contributors xi

1 Introduction to the evolutionary biology of the threespine stickleback 1
 Michael A. Bell and Susan A. Foster
 Geographical distribution 2
 Ecological distribution 4
 General characterization of the threespine stickleback 5
 Major dimensions of phenotypic variation in threespine stickleback 8
 Phylogeny of the threespine stickleback species complex 13
 Other important attributes of Gasterosteus aculeatus for evolutionary studies 21
 Research programmes using the threespine stickleback 21
 Conclusions 26

2 Systematics and morphology of the Gasterosteiformes 28
 Patricia S. Bowne
 Osteology of Gasterosteus 29
 Variation among the Gasterosteiformes 36
 Interrelationships of the Gasterosteiformes 45
 Proposed relatives of the Gasterosteiformes 51

3 Allozyme variation in the Gasterosteus aculeatus complex 61
 Donald G. Buth and Thomas R. Haglund
 Methods 64
 Patterns of allozyme variation 69
 Direction of future research 83
 Summary 83

4 Physiological ecology and evolution of the threespine stickleback 85
 Helga E. Guderley
 The effect of environmental salinity, temperature, and oxygenation on stickleback 85
 Environmental and hormonal control of the reproductive cycle 100
 Future directions for research on the physiological ecology of stickleback 111

5 Energy allocation in the threespine stickleback 114
 R. J. Wootton
 Consumption 116
 Maintenance 120
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>126</td>
</tr>
<tr>
<td>Reproduction</td>
<td>133</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>140</td>
</tr>
<tr>
<td>6 Life history variation in female threespine stickleback</td>
<td>144</td>
</tr>
<tr>
<td>John A. Baker</td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>146</td>
</tr>
<tr>
<td>Life history traits</td>
<td>148</td>
</tr>
<tr>
<td>Discussion</td>
<td>172</td>
</tr>
<tr>
<td>7 Ecology of the threespine stickleback on the breeding grounds</td>
<td>188</td>
</tr>
<tr>
<td>Frederick G. Whoriskey and Gerard J. FitzGerald</td>
<td></td>
</tr>
<tr>
<td>Measures of reproductive success</td>
<td>189</td>
</tr>
<tr>
<td>Duration and timing of the breeding season</td>
<td>190</td>
</tr>
<tr>
<td>Breeding habitat</td>
<td>191</td>
</tr>
<tr>
<td>Variation in male reproductive success</td>
<td>193</td>
</tr>
<tr>
<td>Female reproductive success</td>
<td>198</td>
</tr>
<tr>
<td>Ecology of eggs, fry, and juveniles</td>
<td>201</td>
</tr>
<tr>
<td>Conclusions</td>
<td>204</td>
</tr>
<tr>
<td>8 Evolution of foraging behaviour in the threespine stickleback</td>
<td>207</td>
</tr>
<tr>
<td>Paul J. B. Hart and Andrew B. Gill</td>
<td></td>
</tr>
<tr>
<td>The foraging environment</td>
<td>208</td>
</tr>
<tr>
<td>The foraging apparatus</td>
<td>210</td>
</tr>
<tr>
<td>Foraging behaviour</td>
<td>213</td>
</tr>
<tr>
<td>Future directions and thoughts on foraging theory</td>
<td>236</td>
</tr>
<tr>
<td>9 Predators and morphological evolution in threespine stickleback</td>
<td>240</td>
</tr>
<tr>
<td>Thomas E. Reimchen</td>
<td></td>
</tr>
<tr>
<td>Predator diversity over the geographical range of stickleback</td>
<td>240</td>
</tr>
<tr>
<td>Predator diversity within localities</td>
<td>242</td>
</tr>
<tr>
<td>Quantifying mortality and predation intensity</td>
<td>245</td>
</tr>
<tr>
<td>Evidence for predators as selection agents on stickleback</td>
<td>246</td>
</tr>
<tr>
<td>Predators and morphology in Queen Charlotte Island stickleback</td>
<td>248</td>
</tr>
<tr>
<td>Partitioning causes of mortality: Drizzle Lake</td>
<td>254</td>
</tr>
<tr>
<td>Conclusions</td>
<td>273</td>
</tr>
<tr>
<td>10 Adaptive variation in antipredator behaviour in threespine stickleback</td>
<td>277</td>
</tr>
<tr>
<td>F. A. Huntingford, P. J. Wright, and J. F. Tierney</td>
<td></td>
</tr>
<tr>
<td>Antipredator behaviour of the threespine stickleback</td>
<td>278</td>
</tr>
<tr>
<td>Variation in antipredator behaviour</td>
<td>280</td>
</tr>
<tr>
<td>Variation in antipredator behaviour among United Kingdom populations</td>
<td>285</td>
</tr>
<tr>
<td>Conclusions</td>
<td>295</td>
</tr>
</tbody>
</table>
11 Proximate determinants of stickleback behaviour: an evolutionary perspective
 \textit{William J. Rowland}
 Aggression and territoriality 298
 Nest-building behaviour 308
 Courtship and mating behaviour 313
 Parental behaviour 337
 Conclusions 343

12 Evolution of aggressive behaviour in the threespine stickleback 345
 \textit{Theo C.M. Bakker}
 Stickleback aggression: a multifarious phenomenon 346
 The measurement of aggressiveness: methods 349
 Causes of variation in aggressiveness 351
 Natural selection, sexual selection, and the evolution of aggressiveness 373
 Conclusions 379

13 Evolution of the reproductive behaviour of threespine stickleback 381
 \textit{Susan A. Foster}
 The reproductive behaviour of the threespine stickleback 382
 Intergeneric comparisons and phylogenetic analysis 383
 Interpopulation comparisons 385
 Conclusions 396

14 Speciation and the evolution of reproductive isolation in the sticklebacks (\textit{Gasterosteus}) of south-western British Columbia 399
 \textit{J.D. McPhail}
 Anadromous and stream-resident stickleback 404
 Lake-stream divergence 411
 Intralacustrine divergence—the benthic–limnetic pairs 418
 Discussion 426

15 Palaeobiology and evolution of threespine stickleback 438
 \textit{Michael A. Bell}
 Overview of the fossil record of the Gasterosteidae 440
 The palaeoeocological distribution of fossil \textit{Gasterosteus} phenotypes 446
 The palaeobiology of \textit{Gasterosteus doryssus} 447
 Conclusions 469

16 Evolutionary inference: the value of viewing evolution through stickleback-tinted glasses 472
 \textit{Susan A. Foster and Michael A. Bell}
 Adaptation and the evolution of freshwater populations 473
<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
</tr>
</tbody>
</table>

- Patterns of evolutionary change 478
- The evolution of correlated characters 482
- Phenotypic integration 483
- Closing thoughts 484

References 487
Author index 557
Subject index 562
Contributors

John A. Baker Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
Theo C.M. Bakker Universität Bern, Zoologisches Institut, Abteilung Verhaltensökologie, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
Michael A. Bell Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794-5245, USA
Patricia S. Bowne Department of Zoology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada (Present address: Biology Department, Alverno College, 3401 South 39th Street, Milwaukee, Wisconsin 53234-3922, USA)
Donald G. Buth Department of Biology, University of California, Los Angeles, California 90024-1606, USA
Gerard J. FitzGerald Département de biologie, Université Laval, Ste Foy, Québec G1K 7P4, Canada
Susan A. Foster Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
Andrew B. Gill Department of Zoology, University of Leicester, University Road, Leicester LE1 7RH, UK
Helga E. Guderley Département de biologie, Université Laval, Ste Foy, Québec G1K 7P4, Canada
Thomas R. Haglund Department of Biology, University of California, Los Angeles, California 90024-1606, USA
Paul J.B. Hart Department of Zoology, University of Leicester, University Road, Leicester LE1 7RH, UK
F. A. Huntingford Department of Zoology, University of Glasgow, Glasgow G12 8QQ, UK
J. D. McPhail Ecology Group, Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
Thomas E. Reimchen Department of Biology, University of Victoria, P.O. Box 1700, Victoria, British Columbia V8W 2Y2, Canada
William J. Rowland Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
J. F. Tierney Department of Zoology, University of Glasgow, Glasgow G12 8QQ, UK
Frederick G. Whoriskey Department of Renewable Resources, Macdonald
College of McGill University, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec H9X 1CO, Canada

R.J. Wootton Department of Biological Sciences, University College of Wales, Aberystwyth, Dyfed SY23 3DA, Wales, UK

P.J. Wright Department of Zoology, University of Glasgow, Glasgow G12 8QQ, UK (Present address: SOAFD Marine Laboratory, P.O. Box 101, Aberdeen AB9 8DB, UK)
A central tenet of evolutionary theory is that adaptation in the wild, like artificial selection, occurs gradually through the sequential fixation of small-effect variants (1). Consequently, the independent evolution of similar phenotypes is expected to use unique combinations of genes and alleles (2). New populations, however, are often established in novel environments at the edge of an organism's range, and selective. Bell, M. A. & Foster, S. A. (1994) The Evolutionary Biology of the Threespine Stickleback (Oxford Univ. Press, Oxford).