Instructor: Howard Haber
Office: ISB, Room 326
Phone Number: 459-4228
E-mail: haber@scipp.ucsc.edu
Office Hours: Mondays 2–4 pm
Course Website: http://scipp.ucsc.edu/~haber/ph251/

TEXTBOOKS:

Group Theory in a Nutshell for Physicists, by Anthony Zee

Recommended outside reading:

Group Theory in Physics, by Wu-Ki Tung
Groups, Representations and Physics (2nd edition), by H.F. Jones
Group Theory: A Physicist’s Survey, by Pierre Ramond
Group Theory in Physics: An Introduction, by J.F. Cornwell
Group Theory in Physics, Volume 1, by J.F. Cornwell
Group Theory in Physics, Volume 2, by J.F. Cornwell
Group Theory for Physicists, by Zhong-Qi Ma
Problems and Solutions in Group Theory for Physicists, by Zhong-Qi Ma and Xiao-Yan Gu
Lie Groups, Lie Algebras, and Some of Their Applications, by Robert Gilmore
Lie Groups and Lie Algebras for Physicists, by Ashok Das and Susumu Okubo
Lie Algebras in Particle Physics (2nd edition), by Howard Georgi
Symmetries, Lie Algebras and Representations, by Jürgen Fuchs and Christoph Schweigert
Symmetry Groups and Their Applications, by Willard Miller Jr.
Group Theory: Birdtracks, Lie’s, and Exceptional Groups, by Predrag Cvitanović
 (available for free from: http://www.nbi.dk/GroupTheory/version9.0/index.html)
Semi-Simple Lie Algebras and Their Representations, by Robert N. Cahn
Lie Groups, Lie Algebras, and Representations (2nd edition), by Brian C. Hall
Mathematics of Classical and Quantum Physics, Chapter 10: Introduction to Group Theory,
 by Frederick W. Byron Jr. and Robert W. Fuller
Course Outline

1. Introduction to Abstract Group Theory
2. Fundamentals of Finite Groups
3. Group Representation Theory
4. The Symmetric Group and Young Tableaux
5. Introduction to Topological Groups and Lie Groups
6. SU(2) and SO(3)
7. Global and Local Properties of Lie Groups
8. Lie Algebras
9. Representations of SU(2) and SU(3)
10. Complex Semisimple Lie Algebras and their Representations

Course Requirements

The basic course requirements consist of four problem sets, which will be handed out during the quarter, and a term project. (There will be no exams.) Due to the limited time in a quarter, it will be impossible to do more than sketch some of the most basic applications of group theory to modern physics. To encourage students to delve deeper, all students will be required to complete a term project based on their reading of a particular topic in group theory and its applications to physics. The project may be presented orally or in written form at the end of the term. Oral presentations are encouraged since they will benefit all members of the class. Please follow the following schedule:

Initial choice of topic for term .. May 2
Short written proposal for term .. May 9
Oral Presentation of term project ... June 14
Written version of term project ... June 15

All projects should include a one page bibliography (containing references pertinent to the project). Copies of this bibliography should be made available to all students in the class. For those projects presented orally, a xerox of transparencies and a brief set of notes will be acceptable in lieu of a full written version.

I will be available during my office hours for suggestions and consultation on your choice for the term project. If you need some suggestions, you might consider choosing from the following list of possible topics for term projects.
Suggestions of topics for the term project

1. The Crystallographic Point Groups and Space Groups
2. Lattices, Bloch’s Theorem and Band Theory
3. Group Theoretical Treatment of Vibrational Problems
4. Group Theory and Molecular Spectra
5. Group Theory and the Periodic Table
7. Group Theoretic Methods in Quantum Mechanics
8. Group Theory in Condensed Matter Physics
9. Group Theory in General Relativity
10. Group Theory and the Shell Model in Nuclear Physics
11. Group Theory and the Quark Model in Particle Physics
12. Non-Abelian Discrete Symmetries in Particle Physics
13. Group Structure of Spontaneously Broken Gauge Theories
14. Group Theory and Grand Unification
15. Group Theory and Monopoles
16. Graded Lie Algebras and Supersymmetry
17. The Lorentz and Poincare Groups in Relativistic Field Theory
18. Applications of Clifford Algebras (and spinors) in physics
19. Boson and Fermion Realizations of Lie algebras
20. Spectrum generating groups (a.k.a. noninvariance groups)
21. Coherent states as a problem in group theory

For inspiration, in addition to the recommended outside reading and the many references on group theory for physicists provided in the bibliography that follows, have a look at:

Quantum Theory, Groups and Representations: An Introduction, by Peter Woit
(final draft version available from: https://www.math.columbia.edu/~woit/QM/qmbook.pdf)

Classical and Quantum Mechanics via Lie algebras, by Arnold Neumaier and Dennis Westra
(draft version available from: https://arxiv.org/pdf/0810.1019v2.pdf)
Bibliography

Other selected references in group theory for physicists:

Lectures on Group Theory and Particle Theory, by H. Bacry
Lectures on Group Theory for Physicists, by A.P. Balachandran and C.G. Trahern
Group Theory for the Standard Model of Particle Physics and Beyond, by Ken J. Barnes
Lie Groups and Lie Algebras: A Physicist’s Perspective, by Adam M. Bincer
Group Theory and General Relativity, by Moshe Carmeli
Symmetries in Quantum Mechanics: From Angular Momentum to Supersymmetry, by M. Chaichian and R. Hagedorn
Group Theory: Application to the Physics of Condensed Matter, by Mildred S. Dresselhaus, Gene Dresselhaus and Ado Jorio
Symmetries and Condensed Matter Physics, by Michael El-Batanouny and Frederick Wooten
Group Theoretical Methods and Their Applications, by A. Fässler and E. Stiefel
Lie Groups, Physics and Geometry, by Robert Gilmore
Symmetries and Curvature Structure in General Relativity, by G.S. Hall
Group Theory and its Application to Physical Problems, by Morton Hammermesh
Group Theory in Quantum Mechanics, by Volker Heine
Lie Algebras and Applications (Lecture Notes in Physics), by Francesco Iachello
An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists, by H. Ishimori et al.
Lectures on Groups and Vector Spaces for Physicists, by Chris J. Isham
An Introduction to Tensors and Group Theory for Physicists (2nd edition), by Nadir Jeevanjee
Theory of Groups in Classical and Quantum Physics, by Théo Kahan
Primer for Point and Space Groups, by Richard L. Liboff
Symmetries in Physics: Group Theory Applied to Physical Problems, by W. Ludwig and C. Falter
Lectures on Advanced Mathematical Methods for Physicists, by Sunil Mukhi and N. Mukunda
Group Structure of Gauge Theories, by L. O’Raifeartaigh
Generalized Coherent States and their Applications, by A. Perelomov
Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, by D.H. Sattinger and O.L. Weaver
A Course in the Application of Group Theory to Quantum Mechanics, by I.V. Schensted
Relativity, Groups, Particles, by Roman U. Sexl and Helmut K. Urbantke
Group Theory in Subnuclear Physics, by Fl. Stancu
Group Theory and Physics, by S. Sternberg
Shattered Symmetry, by Pieter Thyssen and Arnout Ceulemans
Group Theory and Quantum Mechanics, by Michael Tinkham
Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, by E. Wigner
Classical Groups for Physicists, by Brian G. Wybourne
Selected references in topology and differential geometry for physicists:

An Introduction to Spinors and Geometry, by A.M. Benn and R.W. Tucker
Differential Geometry and Lie Groups for Physicists, by Marián Fecko
The Geometry of Physics: An Introduction (3rd edition), by Theodore Frankel
Differential Geometry for Physicists, by Bo-Yu Hou and Bo-Yuan Hou
Fundamental Groups and Covering Spaces, by Elon Lages Lima
Topology: An Introduction with Application to Topological Groups, by George McCarty
A First Course in Topology: Continuity and Dimension, by John McCleary
Geometry, Topology and Physics (2nd edition), by M. Nakahara
Geometry and Topology, by Miles Reid and Balázs Szendrői
Geometrical Methods of Mathematical Physics, by Bernard Schutz

Other selected mathematical references:

Basic Lie Theory, by Hossein Abbaspur and Martin Moskowitz
Conformal Groups in Geometry and Spin Structures, by Pierre Anglès
An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, by A. Arvanitoyeorgos
Matrix Groups: An introduction to Lie group theory, by Andrew Baker
Theory of Group Representations and Applications, by A.O. Barut and R. Raczka
Representations of Linear Groups, by Rolf Berndt
Representations of Compact Lie Groups, by Theodor Bröcker and Tammotom Dieck
Lie Groups (2nd edition), by Daniel Bump
Lectures on Lie Groups and Lie Algebras, by R.W. Carter, G. Segal and I.G. Macdonald
Lie Groups, by P.M. Cohn
Matrix Groups, by Morton L. Curtis
The Geometry of Octonians, by Tevian Dray and Corinne A. Manogue
Transformation Groups for Beginners, by S.V. Duzhin and B.D. Chebotarevsky
Clifford Algebras: An Introduction, by D.J.H. Garling
Representations of the Rotation and Lorentz Groups and their Applications, by I.M. Gel’fand, R.A. Minlos and Z. Ya. Shapiro
Basics of Lie Groups, by Michel Gourdin
Lie Algebras: Theory and Algorithms, by W.A. De Graaf
Continuous Groups of Transformations, by Luther Eisenhart
Introduction to Lie Algebras, by Karin Erdmann and Mark Wildon
Spinors and Calibrations, by F. Reese Harvey
Lie Groups, Lie Algebras, by Melvin Hausner and Jacob Schwartz
The Structure and Geometry of Lie Groups, by Joachim Hilgert and Karl-Hermann Neeb
Lectures on Representation Theory, by Jing-Song Huang
Thus, the mass-produced textbook for mass schooling was first developed in Europe. Following the patterns of European colonization (and in noncolonized areas through cultural and technological borrowing) it spread to much of the rest of the world.