SYMMETRY IN PHYSICS

VOLUME 1:
PRINCIPLES AND SIMPLE APPLICATIONS

J. P. ELLIOTT and P. G. DAWBER

School of Mathematical and Physical Sciences
University of Sussex, Brighton

OXFORD UNIVERSITY PRESS
New York
Contents of Volume 1

Preface xvii

1 Introduction 1
 1.1 The place of symmetry in physics 1
 1.2 Examples of the consequences of symmetry 3
 1.2.1 One particle in one dimension (classical) 3
 1.2.2 One particle in two dimensions (classical) 3
 1.2.3 Two particles connected by springs (classical) 4
 1.2.4 One particle in three dimensions using quantum mechanics—spherical symmetry and degeneracies 5
 1.2.5 One particle in one dimension using quantum mechanics—parity and selection rules 6
 1.2.6 The search for symmetry—elementary particle physics 7
 1.3 Summary 8

2 Groups and Group Properties 9
 2.1 Definition of a group 9
 2.2 Examples of groups 11
 2.3 Isomorphism 16
 2.4 Subgroups 17
 2.5 The direct product group 17

v
Contents

2.6 Conjugate elements and classes 18
2.7 Examples of classes 19
 2.7.1 The rotation group \(\mathbb{R}_3 \) 19
 2.7.2 The finite group of rotations \(D_3 \) 20
 2.7.3 The symmetric group \(S_3 \) 21
2.8 The class structure of product groups 21
2.9 The group rearrangement theorem 22

Bibliography

Problems

3 Linear Algebra and Vector Spaces 24
3.1 Linear vector space 25
3.2 Examples of linear vector spaces 27
 3.2.1 Displacements in three dimensions 27
 3.2.2 Displacement of a set of \(N \) particles in three dimensions 28
 3.2.3 Function spaces 28
 3.2.4 Function space with finite dimension 29
 3.2.5 Wave functions 29
3.3 Linear operators 30
3.4 The multiplication, inverse and transformation of operators 32
3.5 The adjoint of an operator—unitary and Hermitian operators 34
3.6 The eigenvalue problem 35
3.7 Induced transformation of functions 36
3.8 Examples of linear operators 38
 3.8.1 Rotation of vectors in the \(xy \)-plane 38
 3.8.2 Permutations 39
 3.8.3 Multiplication by a function in function space 39
 3.8.4 Differentiation in function space 40
 3.8.5 Induced transformation of functions 40
 3.8.6 Further example of induced transformation of functions 41
 3.8.7 Transformed operator 41

Bibliography

Problems

4 Group Representations 43
4.1 Definition of a group representation 43
4.2 Matrix representations 44
4.3 Examples of representations 45
 4.3.1 The group \(D_3 \) 45
 4.3.2 The group \(S_3 \) 46
 4.3.3 Function spaces 47
4.4 The generation of an invariant subspace 48
4.5 Irreducibility 50
4.6 Equivalent representations 52
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1</td>
<td>Proof of Maschke's theorem</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Inequivalent irreducible representations</td>
<td>54</td>
</tr>
<tr>
<td>4.8</td>
<td>Orthogonality properties of irreducible representations</td>
<td>54</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Proof of Schur's first lemma</td>
<td>58</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Proof of Schur's second lemma</td>
<td>60</td>
</tr>
<tr>
<td>4.9</td>
<td>Characters of representations</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Orthogonality relation for characters of irreducible representations</td>
<td>61</td>
</tr>
<tr>
<td>4.11</td>
<td>Use of group characters in reducing a representation</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>A criterion for irreducibility</td>
<td>63</td>
</tr>
<tr>
<td>4.13</td>
<td>How many inequivalent irreducible representations?— the regular representation</td>
<td>64</td>
</tr>
<tr>
<td>4.14</td>
<td>The second orthogonality relation for group characters</td>
<td>66</td>
</tr>
<tr>
<td>4.15</td>
<td>Construction of the character table</td>
<td>67</td>
</tr>
<tr>
<td>4.16</td>
<td>Orthogonality of basis functions for irreducible representations</td>
<td>68</td>
</tr>
<tr>
<td>4.17</td>
<td>The direct product of two representations</td>
<td>70</td>
</tr>
<tr>
<td>4.18</td>
<td>Reduction of an irreducible representation on restriction to a subgroup</td>
<td>73</td>
</tr>
<tr>
<td>4.19</td>
<td>Projection operators</td>
<td>74</td>
</tr>
<tr>
<td>4.20</td>
<td>Irreducible sets of operators and the Wigner–Eckart theorem</td>
<td>78</td>
</tr>
<tr>
<td>4.21</td>
<td>Representations of direct product groups</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>83</td>
</tr>
</tbody>
</table>

5 Symmetry in Quantum Mechanics

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Brief review of the framework of quantum mechanics</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Definition of symmetry in a quantum system</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Degeneracy and the labelling of energies and eigenfunctions</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Selection rules and matrix elements of operators</td>
<td>91</td>
</tr>
<tr>
<td>5.5</td>
<td>Conservation laws</td>
<td>92</td>
</tr>
<tr>
<td>5.6</td>
<td>Examples</td>
<td>93</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Symmetry group C_3</td>
<td>93</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Symmetry group D_3</td>
<td>95</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Symmetry group S_2</td>
<td>96</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Symmetry group A_5</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Use of group theory in a variational approximation</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>Symmetry-breaking perturbations</td>
<td>99</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Examples</td>
<td>100</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Magnitude of the splitting</td>
<td>101</td>
</tr>
<tr>
<td>5.9</td>
<td>The indistinguishability of particles</td>
<td>102</td>
</tr>
<tr>
<td>5.10</td>
<td>Complex conjugation and time-reversal</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>104</td>
</tr>
</tbody>
</table>

6 Molecular Vibrations| 106 |

<table>
<thead>
<tr>
<th>viii</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>The harmonic approximation</td>
</tr>
<tr>
<td>6.2</td>
<td>Classical solution</td>
</tr>
<tr>
<td>6.3</td>
<td>Quantum mechanical solution</td>
</tr>
<tr>
<td>6.4</td>
<td>Effects of symmetry in molecular vibrations</td>
</tr>
<tr>
<td>6.5</td>
<td>Classification of the normal modes</td>
</tr>
<tr>
<td>6.5.1</td>
<td>The water molecule</td>
</tr>
<tr>
<td>6.5.2</td>
<td>The ammonia molecule</td>
</tr>
<tr>
<td>6.6</td>
<td>Vibrational energy levels and wave functions</td>
</tr>
<tr>
<td>6.7</td>
<td>Infrared and Raman absorption spectra of molecules</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Infrared spectra</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Raman spectra</td>
</tr>
<tr>
<td>6.8</td>
<td>Displacement patterns and frequencies of the normal modes</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>7</td>
<td>Continuous Groups and their Representations, Including Details of the Rotation Groups \mathcal{R}_2 and \mathcal{R}_3</td>
</tr>
<tr>
<td>7.1</td>
<td>General remarks</td>
</tr>
<tr>
<td>7.2</td>
<td>Infinitesimal operators</td>
</tr>
<tr>
<td>7.3</td>
<td>The group \mathcal{R}_2</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Irreducible representations</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Character</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Multiplication of representations</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Examples of basis vectors</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Infinitesimal operators</td>
</tr>
<tr>
<td>7.4</td>
<td>The group \mathcal{R}_3</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Infinitesimal operators</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Irreducible representations</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Characters</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Multiplication of representations</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Examples of basis vectors</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Irreducible sets of operators and the Wigner–Eckart theorem</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Equivalent operators</td>
</tr>
<tr>
<td>7.5</td>
<td>The Casimir operator</td>
</tr>
<tr>
<td>7.6</td>
<td>Double-valued representations</td>
</tr>
<tr>
<td>7.7</td>
<td>The complex conjugate representation</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td>8</td>
<td>Angular Momentum and the Group \mathcal{R}_3 with Illustrations from Atomic Structure</td>
</tr>
<tr>
<td>8.1</td>
<td>Rotational invariance and its consequences</td>
</tr>
<tr>
<td>8.2</td>
<td>Orbital angular momentum of a system of particles</td>
</tr>
<tr>
<td>8.3</td>
<td>Coupling of angular momenta</td>
</tr>
<tr>
<td>8.4</td>
<td>Intrinsic spin</td>
</tr>
<tr>
<td>8.5</td>
<td>The hydrogen atom</td>
</tr>
</tbody>
</table>
8.6 The structure of many-electron atoms 170
 8.6.1 The Hamiltonian 170
 8.6.2 The Pauli principle and shell filling 171
 8.6.3 Atoms with more than one valence electron: \(-LS \) coupling 173
 8.6.4 Classification of terms 176
 8.6.5 Ordering of terms 179

Bibliography 181

Problems 181

9 Point Groups with an Application to Crystal Fields 183
 9.1 Point-group operations and notation 184
 9.2 The stereogram 184
 9.3 Enumeration of the point groups 186
 9.3.1 Proper groups 186
 9.3.2 Improper groups 191
 9.4 The class structure of the point groups 192
 9.4.1 Proper point groups 193
 9.4.2 Improper point groups 193
 9.5 The crystallographic point groups 196
 9.6 Irreducible representations for the point groups 197
 9.7 Double-valued representations of the point groups 199
 9.8 Time-reversal and magnetic point groups 201
 9.9 Crystal field splitting of atomic energy levels 202
 9.9.1 Definition of the physical problem 202
 9.9.2 Deduction of the manner of splitting from symmetry considerations 204
 9.9.3 Effect of a magnetic field 209

Bibliography 210

Problems 211

10 Isospin and the Group \(SU_2 \) 213
 10.1 Isospin in nuclei 214
 10.1.1 Isospin labelling and degeneracies 215
 10.1.2 Splitting of an isospin multiplet 218
 10.1.3 Selection rules 221
 10.2 Isospin in elementary particles 222
 10.2.1 Collisions of \(\pi \)-mesons with nucleons 223
 10.3 Isospin symmetry and charge-independence 223

Bibliography 224

Problems 224

11 The Group \(SU_3 \) with Applications to Elementary Particles 226
 11.1 Compilation of some relevant data 227
 11.2 The hypercharge 230
 11.3 Baryon number 231
 11.4 The group \(SU_3 \) 232
 11.5 Subgroups of \(SU_3 \) 233
Contents

11.6 Irreducible representations of SU_3 233
 11.6.1 Complex conjugate representations 241
 11.6.2 Multiplication of representations 242
11.7 Classification of the hadrons into SU_3 multiplets 243
11.8 The mass-splitting formula 244
11.9 Electromagnetic effects 247
11.10 Casimir operators 248
Bibliography 249
Problems 249

12 Supermultiplets in Nuclei and Elementary Particles—the Groups SU_4 and SU_6 and Quark Models 251
 12.1 Supermultiplets in nuclei 252
 12.2 Supermultiplets of elementary particles 255
 12.3 The three-quark model 257
 12.4 The nine-quark model 260
 12.5 Charm 262
 Addendum (mid-1978) 262
 Addendum (late 1983) 263
 Bibliography 264
 Problems 264

Appendix 1 Character Tables for the Irreducible Representations of the Point Groups 265
Appendix 2 Solutions to Problems in Volume 1 275

Index to Volumes 1 and 2 (adjacent to p. 280) 1
Contents of Volume 2

Preface xvi

13 Electron States in Molecules 281
13.1 Linear combinations of atomic orbitals (LCAO) 282
13.2 Examples 284
13.3 Selection rules for electronic excitations in molecule: 287
 Bibliography 288

Problems 288

14 Symmetry in Crystalline Solids 289
14.1 Translational symmetry in crystals 289
14.2 The translation group \(\mathcal{F}(a_1, a_2, a_3) \) 290
14.3 The Brillouin zone and some examples 293
14.4 Electron states in a periodic potential 294
 14.4.1 The nearly-free electron model 295
 14.4.2 Metals and insulators 299
 14.4.3 The tight-binding method 302

14.5 Lattice vibrations 306
 14.5.1 The one-dimensional monatomic lattice 306
 14.5.2 Three-dimensional crystals with several atoms per 309
 unit cell

14.6 Spin waves in ferromagnets 311
14.7 Excitons in insulators (Frenkel excitons) 313
14.8 Selection rules for scattering 314
14.9 Space groups 315
14.9.1 Irreducible representations of space groups 316
14.9.2 Application to electron states 320
14.9.3 Other excitations 323
Bibliography 323
Problems 324

15 Space and Time 325
15.1 The Euclidean group \mathcal{E} 326
15.1.1 Translations 326
15.1.2 The group operators 328
15.1.3 The irreducible representations 328
15.1.4 The group \mathcal{E}_3 331
15.1.5 The physical significance of the Euclidean group \mathcal{E}_3 331
15.1.6 Scalar products and normalisation of basis vectors 333
15.2 The Lorentz group \mathcal{L} 334
15.2.1 The Lorentz transformation 335
15.2.2 The regions of space–time 339
15.2.3 Physical interpretation of the Lorentz transformation 340
15.2.4 Infinitesimal operators 343
15.2.5. The irreducible representations 344
15.3 The Lorentz group with space inversions \mathcal{L}^* 347
15.4 Translations and the Poincaré group \mathcal{P} 349
15.4.1 Translations in space–time 349
15.4.2 The Poincaré group and its representations 351
15.4.3 Casimir operators 356
15.4.4 Definition of scalar product 359
15.5 The Poincaré group with space inversions \mathcal{P}^* 360
15.6 The Poincaré group with time inversion \mathcal{P}^t 362
15.7 Physical interpretation of the irreducible representations of the Poincaré group 363
15.7.1 Mass 364
15.7.2 Spin 366
15.7.3 Parity 368
15.7.4 Time-reversal 369
15.7.5 Some consequences of time-reversal symmetry 373
15.8 Single-particle wave functions and the wave equations 375
15.8.1 The group \mathcal{P}_0 376
15.8.2 The group \mathcal{P}_3 377
15.8.3 The Poincaré group with $s = 0$—the Klein–Gordon equation 379
15.8.4 The Poincaré group with $s = \frac{1}{2}$—the Dirac equation 380
Contents

15.8.5 Particles with zero mass and spin $|m| = \frac{1}{2}$—the Weyl equation
387
15.8.6 Particles with zero mass and spin $|m| = 1$—the Maxwell equations
389

Bibliography
390
Problems
391

16 Particles, Fields and Antiparticles
393
16.1 Classical mechanics of particles
394
16.1.1 Lagrange formalism
394
16.1.2 Hamiltonian formalism
394
16.1.3 Examples from relativistic mechanics
396
16.2 Classical mechanics of fields
398
16.2.1 The transformation of fields
398
16.2.2 The Lagrange equation for fields
399
16.2.3 The electromagnetic field
400
16.3 Quantum fields
401
16.3.1 Second quantisation
402
16.3.2 Field operators
404
16.3.3 The physical role of field operators
405
16.3.4 Causality and the spin-statistics theorem
408
16.3.5 Antiparticles
409
16.3.6 Charge conjugation and the PCT theorem
411
16.3.7 Field for particles with non-zero spin
413

Bibliography
423
Problems
423

17 The Symmetric Group \mathcal{S}_n
425
17.1 Cycles
426
17.2 The parity of a permutation
427
17.3 Classes
428
17.4 The identity and alternating representations—symmetric and antisymmetric functions
430
17.5 The character table for irreducible representations
431
17.6 Young diagrams
434
17.7 The restriction from \mathcal{S}_n to \mathcal{S}_{n-1}
434
17.8 The basis vectors of the irreducible representations
436
17.9 Examples of basis vectors and representation matrices
438
17.10 The direct product of two representations
439
17.11 The outer product of two irreducible representations
441
17.12 Restriction to a subgroup and the outer product
443
17.13 The standard matrices of the irreducible representations
445

17.14 The class operator $\sum_{i<j} T(P_{ij})$
450

Bibliography
450
Problems
451

18 The Unitary Group U_N
452
Contents

18.1 The irreducible representations of U_N 453
18.2 Some examples 456
18.3 The chain of subgroups $U_N \rightarrow U_{N-1} \rightarrow U_{N-2} \rightarrow \ldots \rightarrow U_2 \rightarrow U_1$ 457
18.4 A labelling system for the basis vectors 459
18.5 The direct product of representations of U_N 461
18.6 The restriction from U_N to its subgroup SU_N 462
18.7 The special cases of SU_2, SU_3 and SU_4 464
18.8 The infinitesimal operators of U_N 466
18.9 The complex conjugate representations of U_N and SU_N 467
18.10 The use of the group U_N in classifying many-particle wave functions 469
\hspace{1em}18.10.1 The use of subgroups of U_N 471
18.11 Characters 475
18.12 Group integration and orthogonality 476
18.13 The groups SU_2 and \mathfrak{g}_3 478
\hspace{1em}18.13.1 The parameters of SU_2 478
\hspace{1em}18.13.2 Infinitesimal operators and irreducible representations of SU_2 480
\hspace{1em}18.13.3 Connection between the groups \mathfrak{g}_3 and SU_2 480
\hspace{1em}18.13.4 Explicit formula for the parameters of a product of rotations 482
\hspace{1em}18.13.5 Examples of SU_3 basis vectors 482
Bibliography 483

Problems 483

19 Two Familiar ‘Accidental’ Degeneracies—the Oscillator and Coulomb Potentials 485
19.1 The three-dimensional harmonic oscillator for one particle 486
19.2 The three-dimensional harmonic oscillator for many particles 491
19.3 The harmonic oscillator in n dimensions 492
19.4 The symmetry group of the Coulomb potential 492
\hspace{1em}19.4.1 The groups \mathfrak{g}_4 and \mathfrak{b} 494
\hspace{1em}19.4.2 The classification of states of the Coulomb potential 495
Bibliography 496
Problems 497

20 A Miscellany 498
20.1 Non-invariance groups 498
20.2 The Jahn–Teller effect and spontaneously broken symmetries 502
\hspace{1em}20.2.1 The adiabatic approximation 502
\hspace{1em}20.2.2 The role of symmetry 503
\hspace{1em}20.2.3 Spontaneous symmetry breaking 505
20.3 Normal subgroups, semi-direct products and little groups 507
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4 The classification of Lie groups</td>
<td>510</td>
</tr>
<tr>
<td>20.5 The rotation matrices</td>
<td>519</td>
</tr>
<tr>
<td>Bibliography</td>
<td>522</td>
</tr>
<tr>
<td>Problems</td>
<td>523</td>
</tr>
<tr>
<td>Appendix 3 Topics in Representation Theory</td>
<td>524</td>
</tr>
<tr>
<td>A.3.1 Symmetrised products of representations</td>
<td>524</td>
</tr>
<tr>
<td>A.3.2 Use of a subgroup in reducing product representations</td>
<td>527</td>
</tr>
<tr>
<td>A.3.3 Class multiplication</td>
<td>529</td>
</tr>
<tr>
<td>Appendix 4 Some Results Pertaining to the Group \mathbb{R}_3</td>
<td>531</td>
</tr>
<tr>
<td>A.4.1 An integral over three spherical harmonics</td>
<td>531</td>
</tr>
<tr>
<td>A.4.2 The spherical harmonic addition theorem</td>
<td>532</td>
</tr>
<tr>
<td>A.4.3 Group integration</td>
<td>533</td>
</tr>
<tr>
<td>Appendix 5 Techniques in Atomic Structure Calculations</td>
<td>539</td>
</tr>
<tr>
<td>A.5.1 Term energies for p^2 and p^3 configurations</td>
<td>539</td>
</tr>
<tr>
<td>A.5.2 Recoupling coefficients ($6j$- and $9j$- symbols)</td>
<td>543</td>
</tr>
<tr>
<td>A.5.3 Transition strengths</td>
<td>547</td>
</tr>
<tr>
<td>A.5.4 The crystal field potential</td>
<td>549</td>
</tr>
<tr>
<td>A.5.5 Use of symmetry to deduce ratios of splittings</td>
<td>550</td>
</tr>
<tr>
<td>Problems on appendices 4 and 5</td>
<td>553</td>
</tr>
<tr>
<td>Appendix 6 Solutions to Problems in Volume 2</td>
<td>555</td>
</tr>
<tr>
<td>Index to Volumes 1 and 2 (adjacent to p. 558)</td>
<td>1</td>
</tr>
</tbody>
</table>
Preface to Volume 1

One cannot study any physical system for very long before finding regularities or symmetries which demand explanation and, even though the system may be complex, one expects that the regularities will have a simple explanation. This basic optimism, which pervades not only physics but science in general, is justified in the case of symmetries because there is a theory of symmetry which has application in almost all branches of physics and especially in quantum physics. The object of our book is to describe the theory of symmetry and to study its applications in a wide variety of physical systems.

The book has grown out of several lecture courses which we have given at the University of Sussex during the past ten years. One was a general introductory course on symmetry given to third-year undergraduates, one a postgraduate course on symmetry in solid-state physics and one a postgraduate course on symmetry in atomic, nuclear and elementary-particle physics. As a result, the book may be used by students in any of these categories. We regard chapters 1–5 (inclusive) as a minimum selection for any student wishing to study symmetry, although those students who have taken an undergraduate course on linear algebra will find that much of chapter 3 is familiar and may be read quite rapidly. The remaining chapters 6–11 in volume 1 cover a wide range of applications which is quite sufficient for an undergraduate course. One could even be selective within the first volume by omitting chapters 10–12 on nuclear and elementary particle physics or
alternatively by omitting chapters 6 and 9 on the point groups. We would expect the second volume to be used for serious study at the postgraduate level and for occasional reference by the more inquisitive undergraduate.

The first chapter of volume 1 introduces the concept of symmetry with some very simple examples and lists the general consequences. We then leave physics aside for three chapters while preparing the mathematical tools to be used later. The most important of these are group theory and linear algebra which are described in chapters 2 and 3. The fourth chapter brings together these two ideas in a study of group representations and it is this aspect of group theory which is most used in the theory of symmetry. We return to physics in chapter 5 with a brief summary of the basic ideas of quantum mechanics and a general description of the effects of symmetry in quantum systems. The remainder of the book is concerned with applications to different physical systems and the study in greater detail of the relevant groups. We cover a broad range of applications from molecular vibrations to elementary particles and in each case we aim to introduce sufficient background description to enable the reader who has no prior knowledge of that particular physical system to appreciate the role being played by symmetry. Each application is reasonably self-contained and the more sophisticated systems are left until the later chapters. The vibration of molecules is the first phenomenon studied in detail, in chapter 6, and here we are able to illustrate the results of symmetry in classical mechanics before going on to the quantised theory. Chapters 7 and 8 describe the symmetry with respect to rotations with applications to the structure of atoms. It is here that we meet for the first time a continuous group, with an infinite number of elements, or symmetry operations, and the general properties of such groups are described. Chapter 9 describes in some detail the 'point groups', which contain only a finite number of rotations, and uses them to study the influence of a crystal field on atomic states. In chapters 10, 11 and 12 we move on to the more abstract symmetries encountered in nuclear and elementary particle physics but make use of the same general theory that was used for the more concrete applications in earlier chapters. We introduce the groups of unitary transformations in two, three, four and six dimensions and use them to describe the observed symmetry between neutrons and protons and the regularities amongst some of the recently discovered short-lived elementary particles. The ideas of 'strangeness' and 'quarks' are explained.

Volume 2 begins with a further application of the use of 'point groups'—to the motion of electrons in a molecule—and then, in chapter 14, moves away from symmetries with a fixed point to study discrete translations and their applications to crystal structure. The theory of relativity is of profound importance in the philosophy of physics and, when speeds become comparable with that of light, it has practical importance. For all the systems discussed in volume 1 we are able to ignore relativity because the speeds of the particles involved are sufficiently small. Chapter 15 describes the symmetry in four-dimensional space-time which is the origin of relativity theory and discusses its consequences, especially in relation to the classification of elementary
particles. The concepts of momentum, energy, mass and spin are interpreted in terms of symmetry using the Lorentz and Poincaré groups and a natural place is found in the theory for particles, like the photon, with zero mass. Chapter 16 is concerned with fields, in contrast to the earlier chapters which dealt with particles or systems of particles. We first describe classical fields, such as the electromagnetic field, using four-dimensional space-time. This is followed by a brief account of the theory of relativistic quantum fields which provides a framework for the creation and annihilation of particles and the existence of antiparticles. Chapters 17 and 18 contain details of two general groups, the 'symmetric' group of all permutations of \(n \) objects and the 'unitary' group in \(N \) dimensions, and an intimate relation between these two groups is discussed. Particular cases of these two groups have been met earlier. Chapter 19 describes some unexpected symmetries in two familiar potentials, the Coulomb and the harmonic oscillator potentials, and a number of small, unconnected, but interesting topics are collected into the last chapter.

The text includes worked examples and a selection of problems with solutions. A bibliography of references for further reading is given at the end of each chapter for those who wish either to follow the physical applications into more detail or to study some of the mathematical questions to a greater depth.

To aid the reader we have followed the standard convention of using italic type for algebraic symbols such as \(x, y \) and \(z \), whereas operators are distinguished by the use of roman type. An operator or matrix will be written \(\mathbf{T} \) but its matrix elements \(T_{ij} \), which are numbers, will be in italic type. In addition, bold face type will be used for vectors and in chapters 15 and 16 of volume 2 we meet four-vectors \(\mathbf{e} \) which are printed with a circumflex.

Brighton, Sussex, 1979
1

Introduction

1.1 The place of symmetry in physics

According to the Concise Oxford Dictionary, symmetry is defined as 'Beauty resulting from) right proportion between the parts of the body or any whole, balance, congruity, harmony, keeping'. Although there is much complex detail in physics there is also much beauty and simplicity and it is the symmetry in physical laws and physical systems which is largely responsible for this. Consequently, symmetry plays an important role in physics and one which is increasing in importance with modern developments. It is the purpose of this book to explain in general terms why the existence of symmetry leads to a variety of physical simplicities in both classical and quantum mechanics. To illustrate the general results we shall refer to simple properties of molecules, crystals, atoms, nuclei and elementary particles. Although these physical systems are so obviously different from one another, nevertheless the same theory of symmetry may be applied to them all. The study of symmetry, therefore, helps to unify physics by emphasising the similarity between different fields.

It is true that symmetry plays a part in both classical and quantum physics, but it is in the latter that most interest lies. There are several reasons for this. The first is that there is a much greater scope for symmetry to exist in the microscopic domain since, for example, one electron is identical with any other...
Introduction

1.1

electron and one atom of carbon (say) is identical with any other. The second reason is that at the microscopic level one must use quantum mechanics which is inherently more complicated than classical mechanics and so provides more scope for simplification through symmetry arguments. For example, a particle is described by a wave function rather than a single position. One further reason is that the structure of atomic and subatomic systems is now one of the exciting frontiers of science and the ideas of symmetry are helping to create order out of apparent chaos.

Throughout physics one uses mathematics as the tool with which to investigate the consequences of some assumed theory or model. For example, in the motion of a particle of mass M in one dimension x under some force $f(x)$ the physical law (Newtonian theory) tells us that $f(x) = M (d^2x/dt^2)$. To find the position $x(t)$, as a function of time, given $f(x)$, we must solve this differential equation, putting in the initial values of x and dx/dt. Thus, in Newtonian mechanics, the differential and integral calculus is the appropriate tool. In studying the symmetry of physical systems we are asking about their behaviour under transformations. For example, if a particle moves in one dimension under the influence of a potential $V(x)$, that potential may have reflection symmetry in the origin, i.e. $V(-x) = V(x)$. In this case the potential is said to be invariant (unchanged) under the transformation which replaces x by $-x$. In another example, that of a particle moving in three dimensions, the potential may have spherical symmetry, which means that, in spherical polar coordinates, the potential is independent of angle and may be written $V(r)$. In this case the potential is invariant under any of the transformations which rotate through any angle about any axis through the origin—an infinite number of transformations!

To investigate the physical consequences of the symmetry of a system we must, therefore, learn something about transformations and in particular about the set (collection) of transformations which leave some function, like the potential, invariant. The theory of such sets of transformations is called 'group theory' by mathematicians and this is the appropriate tool for the physicist to use in studying symmetry.

It is fascinating to draw an analogy between the use of calculus in classical mechanics and the use of group theory in quantum mechanics. Historically the discovery of Newton’s laws and the invention of the calculus occurred at about the same time in the seventeenth century. Although the ideas of group theory were introduced into mathematics as early as 1810 it was not until the 1920s that the theory of group representations, which is crucial to the study of symmetry, was developed. This was the very time when physicists were formulating the quantum theory. In fact the significance of symmetry in quantum mechanics was realised very early in the classic works of E. Wigner, in 1931, H. Weyl, in 1928, and Van-der-Waerden, in 1932.

There have always been those who have argued that it is unnecessary to use group theory in quantum mechanics. In a sense this is true, since group theory itself is built from elementary algebraic steps. However, the investment of
1.2 Examples of the consequences of symmetry

To whet the appetite we now list a number of physical systems which possess symmetry and we point out some features of their behaviour which are direct consequences of the symmetry. Simpler examples are given first. Although in some cases we are able to relate the behaviour to the symmetry without developing new methods this is, of course, not always possible. It is the purpose of this book to describe generally the consequences of symmetry and it will not be until much later in the book that we shall be in a position to understand and to predict the behaviour of systems with intricate symmetries.

1.2.1 One particle in one dimension (classical)

A particle of mass \(M \), moving in one dimension under the influence of a potential \(V(x) \), will have its motion governed by the equation

\[
M\ddot{x} = -\frac{dV}{dx}
\]

(1.1)

Suppose now that \(V(x) \) is a constant, independent of \(x \); in other words that it is invariant under translation. Then clearly \(M\ddot{x} = 0 \) and, integrating, gives \(M\dot{x} = C \), showing the conservation (constancy) of linear momentum \(M\dot{x} \).

1.2.2 One particle in two dimensions (classical)

In two dimensions the motion of the particle is governed by the two equations

\[
M\ddot{x} = -\frac{\partial V}{\partial x} \quad \text{and} \quad M\ddot{y} = -\frac{\partial V}{\partial y}
\]

(1.2)

Suppose now that \(V(x, y) \) is invariant with respect to rotation about the origin; in other words that \(V(x, y) \) is independent of the polar angle \(\theta \) if expressed in terms of the polar coordinates \(r, \theta \) rather than the cartesian \(x \) and \(y \). In this case \(\partial V/\partial \theta = 0 \). However,

\[
\frac{\partial V}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial V}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial V}{\partial y} = -\frac{\partial V}{\partial x} + x\frac{\partial V}{\partial y}
\]
and using equation (1.2)

\[\frac{\partial V}{\partial \theta} = M(y \dot{x} - x \dot{y}) = M \frac{\partial}{\partial t}(y \dot{x} - x \dot{y}) \]

so that the invariance \(\partial V/\partial \theta = 0 \) implies the constancy of the quantity

\(M(y \dot{x} - x \dot{y}) \)

which is the moment of momentum (or angular momentum) about an axis through the origin and perpendicular to the plane.

If the particle were free to move in three dimensions in a potential which was invariant with respect to rotations about any axis then this argument shows that any component of the angular momentum is constant. In other words, for a spherically symmetric potential, both the magnitude and the direction of the angular momentum are conserved.

1.2.3 Two particles connected by springs (classical)

Two particles of equal mass \(M \) are connected to each other and to fixed supports by equal collinear springs with spring constant \(\lambda \). Let the natural length of the springs be \(a \) and the supports a distance \(3a \) apart. Denote the displacements of the two particles from their equilibrium positions by \(x_1 \) and \(x_2 \). Although the general displacement, illustrated in figure 1.1, has no

![Figure 1.1](image)

symmetry it is intuitively clear that, in some sense, the system has reflection symmetry about the centre. In fact, both the kinetic and potential energies

\[T = \frac{1}{2} M(x_1^2 + x_2^2) \quad \text{and} \quad V = \frac{1}{2} \lambda \left(x_1^4 + x_2^4 + (x_1 + x_2)^2 \right) \]

are invariant with respect to the interchange of \(x_1 \) and \(x_2 \), which is the transformation of coordinates \(x_1 \) and \(x_2 \) produced by a reflection in the line AB.

The consequences of symmetry are not very dramatic in this case, but the generalisation to the vibration of atoms about their equilibrium positions in a molecule is of considerable importance. It is therefore worth while to solve