Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text.

Copyright © 2012, 2002 by Pearson Higher Education, Inc., Upper Saddle River, NJ 07458. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458 or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education—Japan
Pearson Education Australia Pty. Ltd
Pearson Education North Asia, Ltd., Hong Kong
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

The Cataloging-in-Publication Data can be found in the Library of Congress.
To our parents
Contents

PREFACE XIII

ABOUT THE AUTHOR XVI

1 FUNDAMENTAL CONCEPTS 1

1.1 Introduction 1
1.2 Historical Background 1
1.3 Outline of Presentation 2
1.4 Stresses and Equilibrium 2
1.5 Boundary Conditions 4
1.6 Strain–Displacement Relations 5
1.7 Stress–Strain Relations 6
 Special Cases, 7
1.8 Temperature Effects 8
1.9 Potential Energy and Equilibrium: The Rayleigh–Ritz Method 9
 Potential Energy II, 9
 Rayleigh–Ritz Method, 12
1.10 Galerkin’s Method 14
1.11 Saint Venant’s Principle 18
1.12 Von Mises Stress 19
1.13 Principle of Superposition 19
1.14 Computer Programs 20
1.15 Conclusion 20
 Historical References 20
 Problems 21

2 MATRIX ALGEBRA AND GAUSSIAN ELIMINATION 28

2.1 Matrix Algebra 28
 Row and Column Vectors, 29

Addition and Subtraction, 29
Multiplication by a Scalar, 29
Matrix Multiplication, 29
Transposition, 30
Differentiation and Integration, 30
Square Matrix, 31
Diagonal Matrix, 31
Identity Matrix, 31
Symmetric Matrix, 32
Upper Triangular Matrix, 32
Determinant of a Matrix, 32
Matrix Inversion, 32
Eigenvalues and Eigenvectors, 33
Positive Definite Matrix, 35
Cholesky Decomposition, 35

2.2 Gaussian Elimination 35
 General Algorithm for Gaussian Elimination, 37
 Symmetric Matrix, 40
 Symmetric Banded Matrices, 40
 Solution with Multiple Right Sides, 40
 Gaussian Elimination with Column Reduction, 42
 Skyline Solution, 44
 Frontal Solution, 45

2.3 Conjugate Gradient Method for Equation Solving 45
 Conjugate Gradient Algorithm, 46
 Input Data/Output 46

Problems 47
 Program Listings, 49

3 ONE-DIMENSIONAL PROBLEMS 51
3.1 Introduction 51
3.2 Finite Element Modeling 52
 Element Division, 52
 Numbering Scheme, 53
3.3 Shape Functions and Local Coordinates 55
3.4 The Potential-Energy Approach 59
 Element Stiffness Matrix, 60
 Force Terms, 62
3.5 The Galerkin Approach 64
 Element Stiffness, 64
 Force Terms, 65
3.6 Assembly of the Global Stiffness Matrix and Load Vector 66
3.7 Properties of K 69
3.8 The Finite Element Equations: Treatment of Boundary Conditions 70

Contents

Types of Boundary Conditions, 70
Elimination Approach, 71
Penalty Approach, 76
Multipoint Constraints, 82

3.9 Quadratic Shape Functions 85
3.10 Temperature Effects 92
3.11 Problem Modeling and Boundary Conditions 96
 Problem in Equilibrium, 96
 Symmetry, 97
 Two Elements with Same End Displacements, 97
 Problem with a Closing Gap, 98
 Input Data/Output, 98
Problems 99
 Program Listing, 111

4 TRUSSES 117

4.1 Introduction 117
4.2 Plane Trusses 118
 Local and Global Coordinate Systems, 118
 Formulas for Calculating c and m, 119
 Element Stiffness Matrix, 120
 Stress Calculations, 121
 Temperature Effects, 126

4.3 Three-Dimensional Trusses 129
4.4 Assembly of Global Stiffness Matrix for the Banded and Skyline Solutions 131
 Assembly for Banded Solution, 131
 Skyline Assembly, 132

4.5 Problem Modeling and Boundary Conditions 134
 Inclined Support in Two Dimensions, 134
 Inclined Support in Three Dimensions—Line Constraint, 134
 Inclined Support in Three Dimensions—Plane Constraint, 135
 Symmetry and Antisymmetry, 136
 Input Data/Output, 138
Problems 139
 Program Listing, 147

5 BEAMS AND FRAMES 150

5.1 Introduction 150
 Potential-Energy Approach, 151
 Galerkin Approach, 152

5.2 Finite Element Formulation 153
 Element Stiffness—Direct Approach, 157

5.3 Load Vector 158

Contents

5.4 Boundary Considerations 159
5.5 Shear Force and Bending Moment 160
5.6 Beams on Elastic Supports 162
5.7 Plane Frames 163
5.8 Three-Dimensional Frames 169
5.9 Problem Modeling and Boundary Conditions 173
5.10 Some Comments on Input Data/Output, Problems 174

6 TWO-DIMENSIONAL PROBLEMS USING CONSTANT STRAIN TRIANGLES 188

6.1 Introduction 188
6.2 Finite Element Modeling 189
6.3 Constant Strain Triangle (CST) 191
 Isoparametric Representation, 192
 Potential-Energy Approach, 198
 Element Stiffness, 198
 Force Terms, 199
 Integration Formula on a Triangle, 206
 Galerkin Approach, 206
 Stress Calculations, 208
 Temperature Effects, 210

6.4 Problem Modeling and Boundary Conditions 212
 Some General Comments on Dividing into Elements, 215

6.5 Patch Test and Convergence 215
 Patch Test, 215

6.6 Orthotropic Materials 216
 Temperature Effects, 220
 Input Data/Output, 222

Problems 225
 Program Listing, 238

7 AXISYMMETRIC SOLIDS SUBJECTED TO AXISYMMETRIC LOADING 242

7.1 Introduction 242
7.2 Axisymmetric Formulation 243
7.3 Finite Element Modeling: Triangular Element 245
 Potential-Energy Approach, 248
 Body Force Term, 249
 Rotating Flywheel, 249
 Surface Traction, 250
 Galerkin Approach, 252
7.4 Problem Modeling and Boundary Conditions 256
 Cylinder Subjected to Internal Pressure, 256
 Infinite Cylinder, 257
 Press Fit on a Rigid Shaft, 257
 Press Fit on an Elastic Shaft, 258
 Belleville Spring, 259
 Thermal Stress Problem, 260
 Input Data/Output, 262

Problems 263
 Program Listing, 271

8 TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS
 AND NUMERICAL INTEGRATION 273

 8.1 Introduction 273
 8.2 The Four-Node Quadrilateral 273
 Shape Functions, 273
 Element Stiffness Matrix, 276
 Element Force Vectors, 279
 8.3 Numerical Integration 279
 Two-Dimensional Integrals, 283
 Stiffness Integration, 283
 Stress Calculations, 284
 8.4 Higher Order Elements 286
 Nine-Node Quadrilateral, 287
 Eight-Node Quadrilateral, 289
 Six-Node Triangle, 290
 Integration on a Triangle—Symmetric Points, 291
 Integration on a Triangle—Degenerate Quadrilateral, 292
 8.5 Four-Node Quadrilateral for Axisymmetric Problems 294
 8.6 Conjugate Gradient Implementation of the Quadrilateral Element 295
 8.7 Concluding Remarks and Convergence 295
 8.8 References for Convergence 297
 Input Data/Output, 298

Problems 300
 Program Listings, 308

9 THREE-DIMENSIONAL PROBLEMS IN STRESS ANALYSIS 312

 9.1 Introduction 312
 9.2 Finite Element Formulation 313
 Element Stiffness, 316
 Force Terms, 317
Contents

9.3 Stress Calculations 317
9.4 Mesh Preparation 318
9.5 Hexahedral Elements and Higher Order Elements 322
9.6 Problem Modeling 324
9.7 Frontal Method for Finite Element Matrices 326
 Connectivity and Prefront Routine, 327
 Element Assembly and Consideration of Specified dof, 328
 Elimination of Completed dof, 328
 Backsubstitution, 329
 Consideration of Multipoint Constraints, 329
 Input Data/Output, 330

Problems 332
 Program Listings, 336

10 SCALAR FIELD PROBLEMS 345
10.1 Introduction 345
10.2 Steady State Heat Transfer 346
 One-Dimensional Heat Conduction, 347
 One-Dimensional Heat Transfer in Thin Fins, 355
 Two-Dimensional Steady-State Heat Conduction, 359
 Two-Dimensional Fins, 369
 Preprocessing for Program Heat2D, 370
10.3 Torsion 370
 Triangular Element, 372
 Galerkin Approach, 373
10.4 Potential Flow, Seepage, Electric and Magnetic Fields, and Fluid Flow in Ducts 376
 Potential Flow, 376
 Seepage, 378
 Electrical and Magnetic Field Problems, 379
 Fluid Flow in Ducts, 381
 Acoustics, 383
 Boundary Conditions, 384
 One-Dimensional Acoustics, 384
 One-Dimensional Axial Vibrations, 386
 Two-Dimensional Acoustics, 388
10.5 Conclusion 389
 Input Data/Output, 389

Problems 391
 Program Listings, 402

11 DYNAMIC CONSIDERATIONS 408
11.1 Introduction 408
11.2 Formulation 408
 Solid Body with Distributed Mass, 409

11.3 Element Mass Matrices 411
11.4 Evaluation of Eigenvalues and Eigenvectors 416
 Properties of Eigenvectors, 417
 Eigenvalue–Eigenvector Evaluation, 417
 Inverse Iteration Method, 420
 Generalized Jacobi Method, 423
 Tridiagonalization and Implicit Shift Approach, 427
 Bringing Generalized Problem to Standard Form, 427
 Tridiagonalization, 428
 Implicit Symmetric QR Step with Wilkinson Shift
 for Diagonalization, 431
11.5 Interfacing with Previous Finite Element Programs and a Program
 for Determining Critical Speeds of Shafts 432
11.6 Guyan Reduction 433
11.7 Rigid Body Modes 436
11.8 Conclusion 438
 Input Data/Output, 438
 Problems 440
 Program Listings, 446

12 PREPROCESSING AND POSTPROCESSING 453
12.1 Introduction 453
12.2 Mesh Generation 453
 Region and Block Representation, 453
 Block Corner Nodes, Sides, and Subdivisions, 454
12.3 Postprocessing 461
 Deformed Configuration and Mode Shape, 461
 Contour Plotting, 462
 Nodal Values from Known Constant Element Values
 for a Triangle, 463
 Least-Squares Fit for a Four-Noded Quadrilateral, 465
12.4 Conclusion 466
 Input Data/Output, 467
 Problems 468
 Program Listings, 470

APPENDIX Proof of \(dA = \det \mathbf{J} d\xi d\eta \) 483

BIBLIOGRAPHY 486

ANSWERS TO SELECTED PROBLEMS 490

INDEX 492

Preface

The first edition of this book appeared over 20 years ago and the second and third editions followed subsequently. Translations of the book appeared in Spanish, Korean, Greek, and Chinese languages. We received positive feedback from professors who taught from the book and from students and practicing engineers who used the book. We also benefited from the feedback received from the students in our courses for the past 30 years. We have incorporated several suggestions in this edition. The underlying philosophy of the book is to provide a clear presentation of theory, aspects of problem modeling and implementation into computer programs. The pedagogy of earlier editions has been retained and enhanced in this edition.

WHAT'S NEW IN THIS EDITION

- Introduction of the superposition principle.
- Treatment of symmetry and antisymmetry.
- Additional examples and exercise problems.
- The patch test.
- Beams and Frames chapter moved to follow the Truss chapter.
- Revised Excel VB programs.
- Programs in JAVASCRIPT to run on web browsers such as IE, Firefox, Google Chrome, or Safari.
- Executable graphics programs together with the source codes.
- Additional examples and exercise problems.

New material has been introduced in several chapters. Worked examples and exercise problems have been added to supplement the learning process. Exercise problems stress both fundamental understanding and practical considerations. Problem modeling aspects have been added from early chapters. Principle of superposition is introduced in Chapter 1. Symmetry and antisymmetry considerations in two-dimensional problems are clearly presented. There are additional examples and exercise problems. The patch test is discussed and related problems have been added. The included
programs have a common structure, which should enable the users to follow the development easily. Programs in JAVASCRIPT have been added. This will enable the users to solve finite element analysis problems using web browsers such as IE, Firefox, Safari, or Google Chrome. Excel VB programs have been revised. All programs have been thoroughly checked. The downloadable program set includes executable versions for programs involving graphics. The programs have been provided in Visual Basic, Microsoft Excel/Visual Basic, MATLAB, and JAVASCRIPT, together with those provided earlier in QBASIC, FORTRAN, and C. The Solutions Manual has been updated.

Chapter 1 gives a brief historical background and develops the fundamental concepts. Equations of equilibrium, stress–strain relations, strain–displacement relations, and the principles of potential energy are reviewed. The concept of Galerkin’s method is introduced.

Properties of matrices and determinants are reviewed in Chapter 2. The Gaussian elimination method is presented, and its relationship to the solution of symmetric banded matrix equations and the skyline solution is discussed. Cholesky decomposition and conjugate gradient method are discussed.

Chapter 3 develops the key concepts of finite element formulation by considering one-dimensional problems. The steps include development of shape functions, derivation of element stiffness, formation of global stiffness, treatment of boundary conditions, solution of equations, and stress calculations. Both the potential energy approach and Galerkin’s formulations are presented. Consideration of temperature effects is included.

Finite element formulation for plane and three-dimensional trusses is developed in Chapter 4. The assembly of global stiffness in banded and skyline forms is explained. Computer programs for both banded and skyline solutions are given.

Beams and application of Hermite shape functions are presented in Chapter 5. The chapter covers two-dimensional and three-dimensional frames.

Chapter 6 introduces the finite element formulation for two-dimensional plane stress and plane strain problems using constant strain triangle (CST) elements. Problem modeling and treatment of boundary conditions are presented in detail. Formulation for orthotropic materials is provided.

Chapter 7 treats the modeling aspects of axisymmetric solids subjected to axisymmetric loading. Formulation using triangular elements is presented. Several real-world problems are included in this chapter.

Chapter 8 introduces the concepts of isoparametric quadrilateral and higher-order elements and numerical integration using Gaussian quadrature. Formulation for axisymmetric quadrilateral element and implementation of conjugate gradient method for quadrilateral element are given.

Chapter 9 presents three-dimensional stress analysis. Tetrahedral and hexahedral elements are presented. The frontal method and its implementation aspects are discussed.

Scalar field problems are treated in detail in Chapter 10. While Galerkin as well as energy approaches have been used in every chapter with equal importance, only Galerkin’s approach is used in this chapter. This approach directly applies to the given differential equation without the need of identifying an equivalent functional to
minimize. Galerkin’s formulation for steady-state heat transfer, torsion, potential flow, seepage flow, electric and magnetic fields, fluid flow in ducts, and acoustics are presented.

Chapter 11 introduces dynamic considerations. Element mass matrices are given. Techniques for evaluation of eigenvalues (natural frequencies) and eigenvectors (mode shapes) of the generalized eigenvalue problem are discussed. Methods of inverse iteration, Jacobi, tridiagonalization, and implicit shift approaches are presented.

Preprocessing and postprocessing concepts are developed in Chapter 12. Theory and implementation aspects of two-dimensional mesh generation, least-squares approach to obtain nodal stresses from element values for triangles and quadrilaterals, and contour plotting are presented.

At the undergraduate level some topics may be dropped or delivered in a different order without breaking the continuity of presentation. We encourage the introduction of the Chapter 12 programs at the end of Chapter 6. This helps the students to prepare the data in an efficient manner.

We thank Professor Hongbing Fang, Mechanical Engineering and Engineering Science, UNC Charlotte; Professor Kishore Pochiraju, Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey; Professor Subramaniam Rajan, Ira A. Fulton School of Engineering, Arizona State University; Professor Chris H. Reidel, A. Leon Linton Department of Mechanical Engineering, Lawrence Technological University, Michigan; and Professor Nicholas J. Zabaras, Sibley School of Mechanical and Aerospace Engineering, Cornell University, who reviewed our third edition and gave many constructive suggestions that helped us improve the book.

Complete self-contained computer programs with source codes in Visual Basic, Excel-based Visual Basic, MATLAB, FORTRAN, JAVASCRIPT and C to accompany the text are available at www.pearsonhighered.com/chandrupatla.

Tirupathi Chandrupatla expresses his gratitude to J. Tinsley Oden, whose teaching and encouragement have been a source of inspiration to him throughout his career. He expresses his thanks to many students at Rowan University and Kettering University who took his courses. He expresses his thanks to his colleague Paris von Lockette who gave valuable feedback after teaching the course using the second and third editions.

Ashok D. Belegundu thanks his students at Penn State for their feedback on the course material and programs.

We thank Marcia Horton who provided us guidance with the present and previous editions of the book. We thank our editor Norrin Dias, Tacy Quinn, Debbie Yarnell, and Clare Romeo all from Prentice Hall who turned this project into a pleasant chore. We thank Maheswari Pon Saravanan, project manager and her team at TexTech International, Chennai, India for efficient handling of copyediting and page proofs.

TIRUPATHI R. CHANDRUPATLA
ASHOK D. BELEGUNDU

About the Authors

Tirupathi R. Chandrupatla is Professor and Founding Chair of Mechanical Engineering at Rowan University, Glassboro, New Jersey. He received the B.S. degree from National Institute of Technology (formerly REC), Warangal. He received the M.S. degree in design and manufacturing from the Indian Institute of Technology (IIT), Bombay. He started his career as a design engineer with Hindustan Machine Tools, Bangalore. He then taught in the Department of Mechanical Engineering at IIT, Bombay. He pursued his graduate studies in the Department of Aerospace Engineering and Engineering Mechanics at the University of Texas at Austin and received his Ph.D. in 1977. He subsequently taught at the University of Kentucky. Prior to joining Rowan, he was a Professor of Mechanical Engineering and Manufacturing Systems Engineering at Kettering University (formerly GMI Engineering and Management Institute/General Motors Institute), where he taught for 16 years.

Dr. Chandrupatla has broad research interests, which include finite element analysis, design, optimization, quality and reliability, and manufacturing engineering. He has published widely in these areas and serves as a consultant to industry. Dr. Chandrupatla is a registered Professional Engineer and also a Certified Manufacturing Engineer. He is a member of ASEE, ASME, SAE, and SME.

Ashok D. Belegundu has been a Professor of Mechanical Engineering at The Pennsylvania State University, University Park, since 1986. Prior to this, he taught at GMI, now Kettering University, in Michigan. He received his B.Tech. degree from IIT, Madras and his Ph.D. from the University of Iowa. He has been a principal investigator on research projects involving finite element based optimization for several agencies, including the National Science Foundation, Army Research Office, NASA, SERC (UK), MacNeal-Schwendler Corporation, Gentex Corporation, and Ingersoll-Rand. A detailed list of his publications and projects can be found at http://www.mne.psu.edu/Directories/Faculty/Belegundu-A.html. He has given short courses on finite elements to the Forging Industry Association, Hazleton Pumps, Infosys (India).
Introduction to Finite Elements in Engineering

This book provides an integrated approach to finite element methodologies. The development of finite element theory is combined with examples and exercises involving engineering applications. The steps used in the development of the theory are implemented in complete, self-contained computer programs. While the strategy and philosophy of the previous editions has been retained, this book provides an integrated approach to finite element methodologies. The development of finite element theory is combined with examples and exercises involving engineering applications.

Body force in element \(e \) distributed to the nodes of the element traction force in element \(e \), distributed to the nodes of the element virtual displacement variable: counterpart of the real displacement \(u(x, y, z) \) vector of virtual displacements of the nodes in an element; counterpart of \(q \) shape functions in \(t \)(coordinates, material matrix, strain-displacement matrix, respectively).

Introduction to Finite Elements

The finite element method typically uses polynomial functions inside each element. Furthermore, the approximation is usually required to be continuous from element to element. The simplest element which permits continuous functions would be to assume linear variations of \(x \) inside each element. This type of element is called a linear element (not too surprisingly). Using linear finite elements, a sample solution might look like that shown in Figure 2.36.

Figure 2.36: A linear element solution on a mesh with constant element size, \(\Delta x_j = 0.2 \). A linear function can be described by...