Contents

Acknowledgements V
Introduction to Classical and Quantum Field Theory XIII

Part One 1

1 Introduction 3
1.1 What is a Field Theory? 3
1.1.1 Mathematical Description 3
1.2 Basic Mathematical Tools in (Classical) Field Theory 5
1.2.1 Solution of Field Equations of Motion 5
1.2.1.1 Eigenfunction Expansion Method 6
1.2.1.2 Eigenfunction Expansions for Green's Functions 7
1.2.1.3 A Variant of the Above Method: Initial Condition Problem 8
1.2.1.4 Comment on Non-Linear Equations of Motion 10
1.2.2 Evaluation of Partition Function for Quadratic Field Theories 10
1.2.2.1 Non-Linear Energy Functional 13
1.2.2.2 Continuum Limit 13
1.2.2.3 Constraints 14

2 Basics of Classical Field Theory 17
2.1 Lagrangian Formulation for Classical Mechanics/Field Theory 17
2.1.1 Basic Ansatz: The Principle of Least Action 17
2.1.1.1 Conservation of Energy and Momentum 18
2.1.1.2 Galilean Invariance and the Most General Form of Lagrangian 19
2.1.1.3 Constraints 21
2.1.1.4 Lagrangian Formulation for Classical Field Theory 21
2.1.1.5 Space-Time Symmetric Lagrangian Formulation 23
2.2 Conservation Laws in Continuum Field Theory (Noether's Theorem) 24
3 Quantization of Classical Field Theories (I) 29
3.1 Canonical Quantization of Scalar Fields: Bosonic Systems 29
3.1.1 General Quadratic Hamiltonian and Bosons 31
3.1.2 Interaction Between Particles 33
3.1.3 Continuum Limit of Lattice Field Theory 34
3.2 Introduction to Quantum Statistics 35
3.2.1 Fock Space for Bosons and Fermions 36
3.2.2 Introduction to Grassmann Field and Quantum Field Theory for Fermions 38
3.3 Path Integral Quantization of Mechanics and Field Theory 41
3.3.1 Imaginary-Time Path Integral and Partition Function 43
3.3.2 Application to Quantum Field Theory 45
References 47

4 Quantization of Classical Field Theories (II) 49
4.1 Path Integral Quantization in Coherent State Representations of Bosons and Fermions 49
4.1.1 Imaginary Time and Partition Function 51
4.1.1.1 Quantum Field Theory for Bosons 51
4.1.1.2 Quantum Field Theory for Fermions 52
4.2 Two Simple Examples of QFT 54
4.2.1 Phonons 54
4.2.1.1 Continuum Limit 55
4.2.2 Dirac Fermions in 1D 56
4.2.2.1 Covariant form of Dirac equation 59
4.2.3 Quantization of Dirac Equation 60
4.2.3.1 Lattice Dirac Fermions 61
4.3 Simple Applications of Path Integral Formulation 63
4.4 Symmetry and Conservation Laws in Quantum Field Theory 67
References 69

Part Two 71

5 Perturbation Theory, Variational Approach and Correlation Functions 73
5.1 Introduction to Perturbation Theory 73
5.1.1 Path Integral Approach 74
5.1.1.1 Perturbation Theory for Interacting Systems 76
5.1.1.2 Wick's Theorem 77
5.1.2 Dyson's Approach 79
5.1.2.1 Time-Evolution Operator at Imaginary Time 81
5.1.2.2 Perturbation Expansion for S Matrix 81
5.1.2.3 Wick's Theorem in Dyson's Approach 83
5.1.2.4 Example: One-Particle Green's Function 84
5.1.2.5 Perturbation Expansion for One-Particle Green's Function 86
5.1.2.6 Spectral Representation 89
5.2 Variational Approach and Perturbation Theory 92
5.2.1 Example: Hartree–Fock Approximation 93
5.3 Some General Properties of Correlation Functions 95
5.3.1 Linear Response Theory 95
5.3.2 Temperature and Causal Correlation Functions 99
5.3.3 Fluctuation–Dissipation Theorem 101
References 105

6 Introduction to Berry Phase and Gauge Theory 107
6.1 Introduction to Berry Phase 107
6.1.1 Berry Phase for a Simple Quantum System 107
6.1.2 Berry Phase and Particle Statistics 111
6.1.3 Berry Phase and U(1) Gauge Theory 112
6.1.3.1 Relation Between A_μ and Berry Phase 113
6.1.4 Electromagnetism as Gauge Theory 114
6.2 Singular Gauge Potentials and Angular Momentum Quantization 116
6.2.1 Aharonov–Bohm (AB) Effect 116
6.2.2 Alternative Description of the Problem 118
6.2.3 Magnetic Monopole and Angular Momentum Quantization 118
6.2.3.1 Geometrical Theory of Angular Momentum 119
6.2.3.2 Berry Phase and Angular Momentum Quantization 121
6.2.3.3 Quantization of Magnetic Monopole 121
6.2.3.4 Two Dimensions 123
6.2.3.5 Angular Momentum: Statistics Theorem 123
6.3 Quantization of Electromagnetic Field 124
6.3.1 Canonical Quantization 124
6.3.2 Path Integral Quantization 126
6.3.3 Gauge Problem 127
References 128

7 Introduction to Effective Field Theory, Phases, and Phase Transitions 129
7.1 Introduction to Effective Field Theory: Boltzmann Equation and Fluid Mechanics 129
7.1.1 Fluid Mechanics 132
7.1.1.1 Friction and Viscosity 134
7.1.1.2 Limitation of Hydrodynamics: An Example 135
7.2 Landau Theory of Phases and Phase Transitions 136
7.2.1 Order Parameters 136
7.2.1.1 Paramagnetic ↔ Ferromagnetic Transition 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.2</td>
<td>Liquid ↔ Solid Transition</td>
<td>137</td>
</tr>
<tr>
<td>7.2.1.3</td>
<td>Phase Transitions and Broken Ergodicity</td>
<td>137</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Landau's Phenomenological Theory of Phase Transitions</td>
<td>139</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Weakly First-Order Phase Transition</td>
<td>141</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Effective Free Energies in Landau Theory</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Continuum Limit and Landau Theory</td>
<td>145</td>
</tr>
<tr>
<td>7.2.2.4</td>
<td>Quantum Phase Transitions</td>
<td>146</td>
</tr>
<tr>
<td>7.3</td>
<td>Other Examples of Effective Classical and Quantum Field Theories</td>
<td>147</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Projective Hilbert Space (Mori) Approach and Correlation Functions</td>
<td>148</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Quantum Principle of Least Action and Applications</td>
<td>150</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Quasi-particles</td>
<td>152</td>
</tr>
<tr>
<td>7.3.3</td>
<td>(Generalized) Langevin and Fokker-Planck Equations</td>
<td>153</td>
</tr>
<tr>
<td>7.3.3.1</td>
<td>Fokker-Planck Equation</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>157</td>
</tr>
</tbody>
</table>

8 Solitons, Instantons, and Topology in QFT | 159 |
8.1	Introduction to Solitons	159
8.1.1	Stability of Solitons and Topology	162
8.1.1.1	Topological Index for One-Dimensional Scalar Fields	164
8.1.2	Multi-Kink Solutions and Difference Between Solitary Wave and Soliton	164
8.1.2.1	Quantization of Solitons/Solitary Waves	165
8.2	Introduction to Instantons	165
8.2.1	Instantons in 1D Classical Theories	165
8.2.1.1	Instantons in Quantum Mechanics: Quantum Tunneling	168
8.2.2	Winding Number	169
8.3	Vortices and Kosterlitz-Thouless Transition	171
8.3.1	Low-Temperature Spin-Spin Correlation Function	174
8.3.2	Kosterlitz-Thouless Transition	175
8.3.3	Screening and KT Transition	177
8.3.4	Vortices in Superconductors and Superfluids	179
8.4	Skyrmions and Monopoles	180
8.4.1	Spinor (CP1) Representation	183
8.4.2	Meaning of Gauge Field	184
8.4.3	Magnetic Monopoles	185
References		186

Part Three A Few Examples | 187 |

9 Simple Boson Liquids: Introduction to Superfluidity | 189 |
| 9.1 | Saddle-Point Approximation: Semiclassical Theory for Interacting Bosons | 189 |
9.1.1 Semiclassical Approximation (using One-Particle QM as Example) 189
9.1.2 Density–Density Response Function and One-Particle Green’s Function 196
9.1.2.1 A Little Bit Beyond the Semiclassical Approximation 197
9.2 Superfluidity 198
9.2.1 Bose Condensation 198
9.2.2 Superfluid He⁴ 199
9.2.3 Landau’s Analysis for Superfluidity 199
9.2.3.1 A Free Boson Condensate is Not a Superfluid 201
9.2.3.2 A Boson Fluid with Phonon-Like Excitation Spectrum is a Superfluid 201
9.2.3.3 Off-Diagonal Long-Range Order (ODLRO) and Collective Motion of Superfluid 202
9.2.3.4 Two-Fluid Picture 203
9.3 Charged Superfluids: Higgs Mechanism and Superconductivity 204
9.3.1 Goldstone Theorem and Higgs Mechanism 204
9.3.2 Higgs Mechanism and Superconductivity 207
9.3.2.1 Meissner Effect (Higgs Mechanism on Gauge Field) 207
9.4 Supersolids 208
9.5 A Brief Comment Before Ending 210
References 210

10 Simple Fermion Liquids: Introduction to Fermi Liquid Theory 211
10.1 Single-Particle and Collective Excitations in Fermi Liquids 211
10.1.1 The Spectrum of a Free Fermi Gas 211
10.1.2 Collective Modes in Fermi Liquid 213
10.1.2.1 Hubbard–Stratonovich Transformation 214
10.1.2.2 Excitation Spectrum of Electron Gas in RPA 218
10.1.3 Alternative Derivation for RPA 219
10.1.4 Screening 221
10.2 Introduction to Fermi Liquids and Fermi Liquid Theory 222
10.2.1 Quasi-particles and Single-Particle Green’s Function 224
10.2.2 Charge and Current Carried by Quasi-particles 225
10.2.3 Two Examples of Applications 227
10.2.4 Bosonization Description of Fermi Liquid Theory 229
10.2.5 Beyond Fermi Liquid Theory? 230
References 231

11 Superconductivity: BCS Theory and Beyond 233
11.1 BCS Theory for (s-wave) Superconductors: Path Integral Approach 233
11.1.1 Semiclassical (Gaussian) Theory 237
11.2 BCS Theory for (s-Wave) Superconductors: Fermion Excitations and Hamiltonian Approach 239
11.2.1 Variational Wavefunction in BCS Theory 241
11.2.2 GL Equation and Vortex Solution 242
11.2.2.1 Flux Quantization 244
11.2.2.2 Vortices 246
11.2.2.3 Vortices in Neutral Superfluid and KT Transition 248
11.3 Superconductor–Insulator Transition 249
11.3.1 Rotor Model 249
11.3.2 Strong- and Weak-Coupling Expansions 251
References 253

12 Introduction to Lattice Gauge Theories 255
12.1 Introduction: U(1) and Z_2 Lattice Gauge Theories 255
12.1.1 Lattice Gauge Theories 256
12.1.2 Z_2 Gauge Theory 260
12.2 Strong- and Weak-Coupling Expansions in U(1) Lattice Gauge Theory 262
12.2.1 Compactness of Gauge Field and Charge Quantization 264
12.2.2 Charge Confinement 265
12.2.3 Finite 1/g Correction, Loop and String Gas 266
12.2.4 Confinement-to-Plasma Phase Transition and String–Net Condensation 267
12.3 Instantons in 2+1D U(1) Lattice Gauge Theory 268
12.3.1 Plasma and Confinement Phases 269
12.3.2 Wilson Loop 272
12.4 Duality Between a Neutral Superfluid and U(1) Gauge Theory Coupled to Charged Bosons 275
12.4.1 ‘Vortices’ in Vortex Liquid 277
References 278

Appendix: One-Particle Green’s Function in Second-Order Perturbation Theory 279

Index 285
Quantum Field Theory is a Relativistic Quantum Mechanics, but with fields instead of finitely many particle co-ordinates. The motivation comes from the principles of Locality and Lorentz-Invariance. Non-relativistic Quantum Field Theories exist, however, they are not Lorentz-Invariant. Quantum Field Theory shares many of the properties and equations, of Relativistic Quantum Mechanics; however, they are not applied to Wavefunctions, but Wave Functionals instead.